
ORIGINAL PAPER

Privacy-preserving association rule mining based on electronic medical
system

Wenju Xu1 • Qingqing Zhao1 • Yu Zhan1 • Baocang Wang1,2 • Yupu Hu1

Accepted: 11 November 2021 / Published online: 3 January 2022
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Privacy protection during collaborative distributed association rule mining is an important research, which has been widely

used in market prediction, medical research and other fields. In medical research, Domadiya et al. (Sadhana 43(8):127,

2018) focused on mining association rules from horizontally distributed healthcare data to diagnose heart disease. They

claimed they proposed a more effective privacy-preserving distributed association rule mining (PPDARM) scheme.

However, a serious security scrutiny of the scheme is performed, and we find it vulnerable to protect the support of the

itemsets from any electronic health record (EHR) system, which is the most important parameter Domadiya et al. tried to

protect. In this paper, we first present the cryptanalysis of the PPDARM scheme proposed by Domadiya et al. as well as

some revised performance analyses. Then a new PPDARM scheme with less interactions is proposed to avert the short-

comings of Domadiya et al., using the homomorphic properties of the distributed Paillier cryptosystem to accomplish the

cooperative computation. Our scheme allows the directed authority (miner) to obtain the final results rather than all

cooperative EHR systems, in case of semi-honest but pseudo EHR systems. Moreover, security analysis and performance

evaluation demonstrate our proposal is efficient and feasible.
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1 Introduction

In the electronic era, big data has attracted increasing

attention from various trades and industries, especially with

the rapid development of wireless networks [1] and big

data. Since the datum contain a variety of information, any

individuals or organizations can make full use of data to

mine the external or potential information for unpre-

dictable profits. Then the research of data mining [2] is

meaningful. In fact, data mining, also known as database

knowledge discovery, is a useful tool and can be applied to

discover the relationship among a large number of random

data sets in market prediction, medical research and other

fields, which is generally divided into four categories:

association rule mining [3], classification mining [4],

cluster mining [5], and prediction mining [6].

As one of the main branches of data mining, association

rule mining and its fundamental step frequent itemset

mining [7] are two popularly and widely studied data

analysis techniques for a range of market prediction and

medical research [8]. With the mining result, the super-

market can arrange their goods appropriately which can

help gain more profits, meanwhile provide a big conve-

nience for their customers. Similarly, the medical staff,

such as the emergency medical technicians, can predict the

disease of the patients from the symptoms and causes, then

take some effective medical treatments under any critical
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situations to preliminarily save a life from the death.

However, the data especially the medical data sets include

many sensitive information of persons, such as gender, age,

address, career, ID number, medical history, various

indexes of medical examination and so on, so privacy

protection on association rule mining of medical research

[9–12] is pretty popular.

The Apriori algorithm proposed by Agarwal et al. [10]

for association rule mining has received a greater attention.

It first generated all the local frequent itemsets at each node

and then communicated to the general node, producing the

global frequent itemset of association rules. Nahar et al.

[11] investigated the association rule mining to detect the

sick and healthy factors which contributes to heart disease

for males and females, along with the three rule generation

algorithms: Apriori, Predictive Apriori and Tertius. In

2016, Qamara et al. [13] addressed the relation between the

medical datasets and clinically-relevant patterns without

endangering the privacy of patients. A hybrid privacy-

preserving clinical decision support system from medical

data in fog-cloud computing was proposed by Liu et al.

[14]. Baroni et al. [15] proposed a novel divergent asso-

ciation rules approach to obtain thousands of association

rules from the datasets of the malaria in Brazil.

Considering the digitization of e-health, the electronic

health record (EHR) system [16] can not only store large

amounts of medical data but also perform some computa-

tions as carte. Jensen et al. [17] utilized EHR data for

further medical research and clinical care. Then the data

collected by the EHR system can be used for privacy-

preserving association rule mining of medical research and

disease diagnosis. Gkoulalas et al. [18] presented a survey

of algorithms for the patient data in EHR systems, which

remains useful for subsequent analysis tasks in a privacy-

preserving way. Privacy-preserving association rule mining

for horizontally partitioned healthcare data [19] and verti-

cally partitioned healthcare data [20] were both proposed

by Domadiya and Rao respectively. Yigzaw et al. [21]

proposed a feasible architecture which can protect the

privacy of the patients, clinicians, and healthcare institu-

tions as well as mine the clinical performance of a clinician

over the patient data from EHR systems.

Motivation Faced with the rampant Covid-19 virus

under the national circumstance, association rule mining of

medical data becomes urgent and meaningful, since it can

provide some auxiliary references for the research of vac-

cine. For example, the Health Committee wants to know

the situation of the antibody after the first dose of the

vaccine from volunteers during the research and develop-

ment of vaccine. Statistically speaking, collecting more

information of the antibody for volunteers from various

locations is preferred. Hence, we aim to help the Health

Committee to attain the situation of the antibody for vol-

unteers from various locations without leaking the infor-

mation of the volunteers, in order to investigate the

availability of vaccine. Considering the above reality and

requirements, we can first turn to a similar scenario for

experiment and reference: a privacy-preserving distributed

association rule mining (PPDARM) scheme for horizon-

tally partitioned healthcare data.

Domadiya et al. [19] proposed a PPDARM scheme for

horizontally partitioned healthcare data with insecure

communication channel. They also claimed that the

scheme can produce an accurate mining result without

compromising the data privacy of every EHR system. The

system model is shown as Fig. 1. More details can turn to

Sect. 3 in this paper. However, we find the scheme has

serious security flaws in protecting the data privacy of

every EHR system. The improper points in [19] are sum-

marized as follows.

• Every EHR system (participant) is required to make

interactions with the two neighboring EHR systems.

Although the threat model indicates the EHR systems

are assumed to be honest but curious, the situation

where the semi-honest (honest-but-curious) but pseudo

EHR systems cannot be avoided. Moreover, the higher

communication overhead is also an issue to be

improved.

• The performance analyses of the PPDARM scheme in

[19] are not exactly correct. Take the set-up phase for

example. Every EHR system performs a division and a

modular exponentiations modulo p2 and then broadcasts

the ciphertext to the neighboring two EHR systems.

Note that the computation complexity of modular

exponentiation and modular inverse is Oðlog3pÞ,1 the

computation complexity for every EHR system is

Oðlog3pÞ. Although log3p can be regarded as a constant

for security parameter of the scheme, the communica-

tion complexity is illogical to be O(q) from ri 2 Zq as

Domadiya et al. claimed.

• The PPDARM scheme is not as secure as the security

analysis claims under the computational discrete loga-

rithm assumption to effectively protect the information

of the supports. Instead of secure communication

channel as [22], the honest-but-curious EHR systems

can prevent active attacks including interrupt, tamper-

ing and forgery. However, we can still recover the

support of the i-th EHR system CcountðiÞ by computing

Yq
i mod p2 due to the public parameter q, which is the

order of the cyclic multiplicative group G2, i.e.,

Rq
i � 1mod p2.

1 The symbol Oð�Þ is commonly used asymptotic complexity

notations. We denote an asymptotic upper bound with Oð�Þ.
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Contribution In the following, we introduce an

improved PPDARM scheme on healthcare data with inse-

cure communication channel motivated by [19]. Note that

the final goal of the PPDARM scheme in [19] is to ensure

every semi-honest EHR system to obtain the sum of the

supports, which cannot avoid pseudo EHR systems.

Therefore, in our setting, only a directed authority, such as

the Health Committee, is allowed to have access to the

support sum of all the EHR systems.2 Specifically, the

contributions are unfolded below.

• Cryptanalysis of the PPDARM scheme in [19]. First,

some errors and unclear description of the writings are

illustrated. The theoretical performance of the

PPDARM scheme is also evaluated again. Then we

propose an attack algorithm to the PPDARM scheme to

show it is not as secure as they claimed under the

computational discrete logarithm assumption.

• A new PPDARM scheme based on electronic medical

system. To avoid pseudo EHR systems to know the

final results, we propose a PPDARM scheme which

only allows the directed authority (miner) to obtain the

final results rather than all EHR systems. In other

words, only the miner is capable of disease prediction

from all possible symptoms when preserving the

privacy of all EHR systems.

• The security and performance of our proposal. The

distributed Paillier cryptosystem is utilized to protect

the supports of EHR systems. In addition, we perform

the security analysis, theoretical analysis and experi-

mental analysis to demonstrate the feasibility and

availability of our PPDARM scheme based on elec-

tronic medical system.

The structure of this paper is as follows. Section 2 intro-

duces some notations, concepts and cryptosystems used

throughout the paper. The PPDARM scheme in [19] is

briefly described in Sect. 3, followed by our cryptanalysis.

Our improved PPDARM scheme based on electronic

medical system is elaborated in Sect. 4, including the

problem description, model, specific scheme, security

analysis and performance evaluations. Finally, we end the

paper with conclusion in Sect. 5.

2 Preliminaries

We first introduce some basic notations in Table 1.

2.1 Frequent itemset mining and association
rule mining

Association rule mining is an efficient way among different

data mining methods, and frequent itemset mining is the

fundamental step of association rule mining. Let I ¼
fi1; i2; . . .; img be the set of all the items, where ij is an item

for j 2 ½m�. In the electronic medical system, each item

represents a symptom or a disease of the patient. The support

of an itemset X described as Supp(X) is the number of I in the

EHR system that contains X. We get the mining result by

conducting comparison between Supp(X) and a support

threshold Suppmin. Concretely, if SuppðXÞ� Suppmin, the

mining result is that the itemset X is frequent; otherwise, X is

infrequent.

Assume an association rule ‘‘A ) B’’, it means that B

will also occur under the premise that A occurs, where

A;B � I and A \ B ¼ ;. The support and confidence of the

rule ‘‘A ) B’’ are two important indicators measuring the

correlation of A and B. The support of A represents the

frequency of A in the entire transaction data set,

(a) Set-up phase (b) Communication of encryption phase

Fig. 1 System model in [19]

2 In our setting, we think the EHR systems may forge the support to

obtain the final sum of the supports. Hence we make such an

assumption in order to make the weakness in [19] not affect our

scheme.
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SupportðAÞ ¼ PðAÞ:

The confidence of the rule ‘‘A ) B ’’ represents the pro-

portion of the probability that A and B occur simultane-

ously in the probability of A occurring, that is

ConfidenceðA ) BÞ ¼ PðB j AÞ ¼ PðA [ BÞ
PðAÞ :

2.2 Cryptosystem in [19]

Before illustrating the cryptosystem in [19], we first

describe the necessary Euler’s Theorem. For any integers

a, n, there is

auðnÞ � 1 mod nif gcdða; nÞ ¼ 1;

where uðnÞ is the Euler function of the integer n.

The cryptosystem used in [19] is from two cyclic mul-

tiplicative group G1 ¼ \g1 [ ;G2 ¼ \g2 [ of order q.

The two generators are mainly generated from the above

Euler’s Theorem: randomly choose two large primes p, q

such that q divides p � 1 (i.e., qjp � 1), then the generators

are described as follows:

g1 ¼ h
p�1

q mod p and g2 ¼ gp
1 mod p2;

where h 2 Zpnf0g. The public parameters are denoted as

pp ¼ ðG1;G2; g1; g2; p; p2; qÞ:

Definition 1 (Computational discrete algorithm (CDH)

problem) [23] Given only g; ga; gb 2 G, where g is the

generator of a multiplicative group G and a; b 2 Z, com-

puting gab without knowing a, b is computationally

intractable.

2.3 Distributed paillier cryptosystem

The Paillier cryptosystem [24] is a public key crypto-

graphic scheme with additive homomorphism proposed by

Paillier in 1999. The distributed Paillier cryptosystem is an

improved version described as follows, which includes key

generation (KeyGen), encryption (Enc), decryption (Dec)

and partial decryption (Partial Dec) algorithm.

• KeyGen: taking the security parameter as input,

randomly choose two large primes p, q, compute N ¼
pq and k ¼ lcmðp � 1; q � 1Þ. Randomly choose an

integer g 2 Z�
N2 , then the order of g is N. Note that

gcdðk;N2Þ ¼ 1, then there exists k1; k2; . . .; kn for

random n such that

k1 þ k2 þ � � � þ kn � 0 mod k

k1 þ k2 þ � � � þ kn � 1 mod N2:

�

The public key is pk ¼ ðN; gÞ and the secret key is

sk ¼ ðk; k1; k2; . . .; knÞ.
• Enc: randomly choose r 2 Z�

N2 to encrypt the plaintext

l 2 ZN to produce a ciphertext

EpkðlÞ ¼ c ¼ glrNmod N2:

• Dec: Upon receipt of a ciphertext c, compute as Paillier

cryptosystem

DskðcÞ ¼ l ¼
L ck mod N2
� �

L gk mod N2ð Þmod N;

where LðxÞ ¼ x�1
N for integer x.

• Partial Dec: Note that k1 þ k2 þ � � � þ kn � 0 mod k,
then the i-th partition performs cki for i 2 ½n�. After that,
compute

c
0 ¼
Yn

i¼1

cki :

Recall that k1 þ k2 þ � � � þ kn � 1 mod N2, then the

plaintext can also be recovered by

DskðcÞ ¼ l ¼
L c

0
mod N2

� �
L g mod N2ð Þ mod N:

Correctness Now we will illustrate the correctness of

partial decryption algorithm. Since

k1 þ k2 þ � � � þ kn � 0 mod k, there is

c
0
mod N2 ¼ ck mod N2:

Moreover, since g 2 Z�
N2 and the order of g is N, there

exists t 2 ð0;NÞ such that g ¼ 1þ tN. Note that

Table 1 Notations

Notation Description

n Total number of EHR systems (participants)

[n] ½n� ¼ f1; 2; . . .; ng
modn f0; 1; 2; . . .; n � 1g
Z The integer ring

Zn Zn ¼ f0; 1; 2; . . .; n � 1g
gcd The greatest common divisor

lcm The lowest common multiple

Z�
n Z�

n ¼ aj0\a\n; gcdða; nÞ ¼ 1f g
jnj2 The length of the integer n

miði 2 ½n�Þ The support of the i-th EHR system

mP Sum of the supports of all the EHR systems

Suppmin Support threshold for frequent itemsets
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k1 þ k2 þ � � � þ kn � 0 mod k

k1 þ k2 þ � � � þ kn � 1 mod N2;

�

we have

gk mod N2 ¼ð1þ tNÞN2þ1
mod N2

¼1þ tN mod N2

¼g mod N2:

Therefore, the partial decryption algorithm holds depen-

dent on the decryption of Paillier cryptosystem.

Homomorphism and security The distributed Paillier

cryptosystem has the following properties:

1) Homomorphic addition

• Given EpkðlaÞ and EpkðlbÞ with underlying plaintexts

la; lb respectively, we can compute

Dsk EpkðlaÞ � EpkðlbÞ
� �

¼ la þ lb:

• Given a plaintext a 2 ZN , we can compute

Dsk EpkðlaÞ
� �a� �

¼ a � la:

2) Semantic security

The security of distributed Paillier cryptosystem

depends on the Paillier cryptosystem under the Composite

Residuosity Class Problem [24]. Then the distributed

Paillier cryptosystem also has the semantic security, that is,

given a set of ciphertexts, the probabilistic polynomial time

adversary cannot infer any information about the corre-

sponding plaintexts.

3 Cryptanalysis of the PPDARM in [19]

In this section, we describe the PPDARM in [19], followed

by some cryptanalysis.

3.1 The PPDARM in [19]

The PPDARM in [19] serves to compute Ccount ¼Pn
i¼1 CcountðiÞ from n honest-but-curious EHR systems

without disclosing the private value CcountðiÞ 2 G1 of the i-

th EHR system for i 2 ½n�. Specifically, every EHR system

starts with finding 1-frequent itemsets from the original

dataset with Apriori algorithm locally. Then PPDARM

consisting of the set-up phase, encryption phase and sum

phase is presented.

• Set-up Phase: Taking as input the random integer ri 2
Zq for i 2 ½n�, every EHR system shares with the

adjacent two EHR systems, and obtains the random

integer Ri 2 G2. The details are described in Algorithm

1. Note that, even if Ri is obtained in this phase, the

adversary cannot recover ri due to the CDH assumption.

• Encryption Phase: The i-th EHR system for i 2 ½n�
computes the ciphertext using his own random integer

Ri to encrypt CcountðiÞ and broadcasts the ciphertext to

all EHR systems as Algorithm 2.

• Sum Phase: Refer to Algorithm 3. Upon receiving the

ciphertext Yi, every EHR system computes the modular

multiplication of all the ciphertexts as well as a function

operation.

The correctness of PPDARM is omitted here and refer to

[19] for more details. But we must emphasize that only

Ccount ¼
P

i CcountðiÞ\p holds for

1þ pCcount mod p2 ¼ 1þ pCcount;

the correctness follows as desired.

Algorithm 1: Set-up Algorithm (Every EHR System)

Input: Public parameters pp = (G2, g2, p
2, q) described as Section 2.2.

1 Randomly chooses ri ∈ Zq, the i-th EHR system computes
Xi = gri

2 ∈ G2 for i ∈ [n].
2 The i-th EHR system shares Xi with the (i − 1)mod n-th and

(i + 1)mod n-th EHR systems as shown in Fig 1(a), and computes
Ri = (gri+1

2 /g
ri−1
2 )rimod p2.

Output: Ri.

Algorithm 2: Encryption Algorithm (Every EHR System)
Input: The plaintext Ccount(i).

1 Computes Yi = 1 + pCcount(i) R(i) mod p2 and broadcasts it to all
EHR systems as Fig 1(b).
Output: Yi.
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3.2 Our cryptanalysis of the PPDARM in [19]

In this subsection, we first present some mistakes about

typos and theoretical performance analyses in [19], then an

effective attack algorithm against the PPDARM is

elaborated.

(1) The length of parameters p, q.

In terms of the parameters pp ¼ ðG1;G2; g1; g2; p; p2; qÞ
in [19], they claimed jpj2 ¼ jqj2 and qjp � 1. However, the

two conditions are contradiction. If qjp � 1, there is

q	 p � 1\p, then jqj2 	 jpj2 not jpj2 ¼ jqj2 always holds.

(2) The theoretical performance analyses of the

PPDARM.

The revised theoretical performance analysis in [19] is

illustrated as Table 2 and Table 3. We review some basic

conclusions before analyzing the computational complex-

ity of the PPDARM in [19].

1) The computational complexity of modular exponen-

tiation modulo p is Oðlog3pÞ.
2) The computational complexity of modular inverse

modulo p is Oðlog3pÞ.
3) The computational complexity of the multiplication

modulo p is Oðlog2pÞ.

• Through the above descriptions, we can see that the

computational costs for every EHR system in Algo-

rithm 1 are from a division and a modular exponenti-

ations modulo p2 (or a modular inverse and two

modular exponentiations modulo p2 since the algebra

structure is finite field of order p2), that is, Oðlog3pÞ,
rather than O(q) from ri 2 Zq as Domadiya et al.

claimed. Similarly, the communication complexity for

every EHR system in this phase depends on two

interactions, which can be seen as O(1). And the

corresponding communication overhead for every EHR

system is 2 times length of Xi, i.e., 2jXij2 ¼ 4log p.

• In Algorithm 2, every EHR system performs two

modular multiplications modulo p2 and negligible

modular addition, then the computational complexity

is Oðlog2pÞ, which can also be regarded as O(1) since p

is relevant to the security parameter. With respect to the

Encryption Phase, it requires the broadcast of the

ciphertext to n � 1 EHR systems. Then the communi-

cation complexity for every EHR system in this phase is

O(n), and the communication overhead for every EHR

system is n � 1 times length of Yi, i.e.,

ðn � 1ÞjYij2 ¼ 2ðn � 1Þlog p.

• After receiving the ciphertexts of all other EHR

systems, every EHR system performs a division of

function Lð�Þ and n � 1 modular multiplications modulo

p2, where the number of modular multiplications can be

reduced by binary tree in parallel. Note that the

practicability in real life for n\\p, the computational

complexity in Algorithm 3 can be represented as

Oðlog2pÞ. But in the opinion of Domadiya et al., they

only focused on the number of EHR systems even if

n\\p, which is unreasonable. In terms of communi-

cation complexity, every EHR system just performs n �
1 modular multiplications modulo p2 in local, as

Domadiya et al. analyzed this phase is performed

without interactions. Hence the communication com-

plexity is none instead of O(1), and likewise for

communication overhead.

Table 2 Theoretic comparisons of PPDARM for every EHR system in [19]

Our revised analysis Initial analysis [19]

Phase Computational

complexity

Communication

complexity

Communication

overhead

Computational

complexity

Communication

complexity

Set-up DI?ME O(1) 2jXij2 OðqÞ ð
Þ O(1)

Encryption 2MM?MA O(n) ðn � 1ÞjYij2 O(1) O(n)

Sum dlog ðn � 1ÞeMM?DI — — OðnÞ ð
Þ Oð1Þ ð
Þ

MI: modular inverse modulo p2. ME: modular exponentiation modulo p2. DI: division.

MM: modular multiplication modulo p2. MA: modular addition modulo p2

Algorithm 3: Sum Algorithm (Every EHR System)
Input: The ciphertext Yi.

1 Every EHR system computes Y =
n

i=1
Yi mod p2, outputs

Ccount = Y −1
p mod p.

Output: Ccount.
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(3) The attack algorithm against the PPDARM

The PPDARM in [19] aims to compute the sum of the

supports Ccount from n semi-honest EHR systems without

compromising the privacy of the i-th EHR system CcountðiÞ
for i 2 ½n�. Although Domadiya et al. claimed the scheme is

secure under CDH assumption in G2, we can still recover

any CcountðiÞ only by a modular exponentiation as shown in

Algorithm 4.

Correctness. It is clear that

Yq
i mod p2 ¼ 1þ pCcountðiÞ

� �q
griþ1

2 =gri�1

2

� �qrimod p2

¼ 1þ pCcountðiÞ
� �q

g
qri riþ1�ri�1ð Þ
2 mod p2

¼1þ pqCcountðiÞmod p2
*gq

2 ¼ 1mod p2

When CcountðiÞ\
p2�1

pq and CcountðiÞ 2 Zp holds, we have

1þ pqCcountðiÞ mod p2 ¼ 1þ pqCcountðiÞ:

Then the support CcountðiÞ for the i-th EHR system can be

recovered by

CcountðiÞ ¼
Yq

i mod p2 � 1

pq
mod p:

4 Our PPDARM scheme

In order to protect the support sum of all the EHR systems

without leaking their privacy, we propose a new PPDARM

scheme with less interactions among EHR systems com-

pared with [19]. The problem description, model, scheme,

security analysis and performance evaluation of our pro-

posal are presented.

4.1 Problem description

The EHR system can be thought as carte which can not

only store a large number of medical data but also perform

some computations upon the data. There are n number of

EHR systems involved in our PPDARM scheme. The

message CcountðiÞ 2 ZNði 2 ½n�Þ for the i-th EHR system is

produced in the preprocessing phase, where N is a public

parameter as shown in Sect. 2.3. The Health Committees

wants to obtain the support sum Ccount ¼
P

i CcountðiÞ
through a mining scheme, to know about the heart disease

to make measures for healthcare service management. The

mining scheme is required not to leak the information of

mining results and all CcountðiÞs of EHR systems.

4.2 Our model

This section is composed of system model, threat model

and design goals of our PPDARM scheme.

4.2.1 System model

Our system model consists of three entities: Key Genera-

tion Center, EHR Systems and Miner, as shown in Fig. 2.

• Key Generation Center (KGC): a trusted institution.

KGC randomly generates and distributes the keys for

every EHR system and Miner during the set-up phase.

• EHR Systems: carte containing some medical symptom

sets. EHR Systems search and calculate the local

support of the medical symptom sets, and take them as

private information. They also perform auxiliary data

mining tasks for Miner without giving in the privacy of

their own supports.

• Miner: the Health Committee. Miner can query the

disease by uploading physical symptoms and obtain

some mining results to effectively predict the disease.

In the preprocessing phase, the Miner makes a query to the

EHR Systems, all the EHR Systems locally compute the

support of their own data. At the same time, the KGC

randomly distributes keys to the EHR Systems and Miner.

Then EHR Systems can encrypt the supports with the

public key from KGC and send corresponding ciphertexts

back to Miner. After some computations of Miner, all EHR

Systems provide some partial decryptions for Miner. At the

end of the execution, Miner obtains a mining result without

knowing the relevant information of all the EHR Systems.

Algorithm 4: Attack Algorithm

Input: The ciphertext Yi = 1 + pCcount(i) R(i)mod p2 and the
public parameter pp = (p, p2, q) of G2.

1 Upon the receipt of the ciphertext Yi, compute

Ccount(i) =
Y q
i mod p2−1

pq mod p.
Output: Ccount(i).
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4.2.2 Threat model

In our scheme, all entities fully trust KGC. The EHR

Systems and Miner are honest but curious, which means

that they strictly follow the scheme and return the correct

results, but still are curious and try to infer some private

information upon the received information. Moreover,

there is no collusion among EHR Systems and Miner,

let alone EHR Systems. Any probabilistic polynomial time

attacker A attempts to obtain the supports of the EHR

Systems and the mining results of Miner from all data

transmitted on an insecure channel.

Someone may doubt our system model owning to the

trusted institution KGC. The communication channel

where the KGC randomly distributes keys to the EHR

Systems and Miner must be secure to avoid adversaries

from eavesdropping the secret keys of EHR Systems and

Miner, which seems too ideal. In fact, even if there is no

trusted institution KGC, the certificate is required to verify

the identity of the EHR Systems in [19]. However,

Domadiya et al. paid no attention to this problem and only

asked the EHR Systems to be semi-honest. Therefore, the

pseudo EHR Systems can avail themselves of the oppor-

tunity to get in the mining scheme playing the role of semi-

honest EHR Systems, and no one can penetrate their

identities, which causes a big security threat. Contrarily, in

our system model, the process of distributing keys to the

EHR Systems and Miner for KGC can be seen as a ‘‘black

box’’, we only care about the outputs, that is, EHR Systems

and Miner possess the public key and their own secret keys

private for any others. The problem that every EHR System

shares the same parameters or secret keys will be resolved.

4.2.3 Design goals

Under the above system model and threat model, our

design goals are as follows.

• Privacy. The privacy of EHR Systems should be

protected effectively during the mining process. That

is, the support of every EHR System should be private

for any others. In addition, only Miner can obtain the

final mining results.

• Accuracy. The privacy of the mining results should be

ensured, when the mining results are also required to be

accurate.

• Feasibility. The performance of the privacy-preserving

distributed association rule mining scheme based on

medical data should be efficient, which can be applied

to real life.
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4.3 Our mining scheme

Before illustrating our mining scheme consisting of set-up

phase, encryption phase and decryption phase, we first

present a preprocessing phase to produce the support

CcountðiÞ for i 2 ½n� of the i-th EHR System. That is, Miner

makes a query to every EHR System, then the i-th EHR

System computes locally his own data and produces a

plaintext denoted by CcountðiÞ for all i 2 ½n�. Now our min-

ing scheme is unfolded as follows.

• Set-up Phase: The KGC randomly distributes public

key and secret keys to the EHR Systems and Miner, as

shown in Algorithm 5.

• Encryption Phase: Every EHR system sends a cipher-

text using the encryption algorithm of distributed

Paillier cryptosystem as Sect. 2.3 to Miner. The details

are described in Algorithm 6.

• Decryption Phase: Refer to Algorithm 7. Upon receiv-

ing the ciphertext Y, every EHR system decrypts it with

his own secret key and sends the decrypted result back

to Miner. After some computations, Miner obtains the

final mining result.

Correctness It is clear that for all i 2 ½n�

Y ¼ g
P

i
CcountðiÞ

Y
i

ri

 !N

mod N2;

and

DCcount ¼ Ykm �
Yn

i¼1

DYi

 !
mod N2

¼g kmþ
P

i
kið Þ
P

i
CcountðiÞ

Y
i

ri

 !N kmþ
P

i
kið Þ
mod N2

*km þ
X

i

ki � 0 mod k and rNk
i � 1 mod N2

¼g kmþ
P

i
kið Þ
P

i
CcountðiÞmod N2:

Therefore, we have

L DCcount mod N2ð Þ
L g mod N2ð Þ mod N

¼
L ð1þ tNÞ kmþ

P
i
kið Þ
P

i
CcountðiÞ mod N2

� �
L 1þ tN mod N2ð Þ mod N

¼
tN km þ

P
i ki

� �P
i CcountðiÞ mod N2

tN mod N2
mod N

*km þ
X

i

ki � 1 mod N2

¼
tN
P

i CcountðiÞ mod N2

tN mod N2
mod N

¼
X

i

CcountðiÞ ¼ Ccount:

4.4 Security analysis

We analyze the security of our scheme with insecure

channel under the threat model introduced in Sect. 4.2.2.

Assume that the adversary A interacts with the challenger

who has secret information in the real world and the sim-

ulator S in the ideal world. In our scheme, we regard the

Fig. 2 Our system model

Algorithm 5: Set-up Algorithm (KGC+Every EHR System +Miner)
Input: The security parameter.

1 Taking the security parameter as input, KGC performs the key
generation algorithm of distributed Paillier cryptosystem as Section
2.3, and distributes secret keys λ1, λ2, . . . , λn, λm such that

λ1 + λ2 + · · · + λn + λm ≡ 0 mod λ
λ1 + λ2 + · · · + λn + λm ≡ 1 mod N2

to the n EHR Systems and Miner respectively.
Output: The public key is pk = (N, g).
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EHR System or Miner as challenger in different phases. If

the view in the real world is computationally indistin-

guishable from the one in the ideal world, that is,

REAL
EHR System
A ð�Þ

n o
�c IDEAL

EHR System
S ð�Þ

n o

REALMiner
A ð�Þ

� �
�c IDEALMiner

S ð�Þ
� �

then we say our mining scheme secure.

Theorem 1 Our data mining scheme is secure under semi-

honest model.

Proof The security in the Set-up phase depends on the

trusted institution KGC. We focus on the security analysis

of the Encryption and Decryption phase. h

Lemma 1 During the Encryption phase, every EHR Sys-

tem is secure against a semi-honest adversary AEHR System
S

corrupting the EHR System in the real world, likewise for

Miner against a semi-honest adversary AMiner
S .

Proof The view of the i-th EHR System for i 2 ½n� in this

phase contains Yi, i.e., the encryption of secret support

CcountðiÞ. And the view of Miner are the n ciphertexts of

supports uploaded from every EHR System and the mul-

tiplication of these ciphertexts Y, i.e., Y1; . . .; Yn;Y .

Considering that our threat model is semi-honest, every

EHR System chooses a random integer to encrypt his own

support. Moreover, the credible KGC distributes secret

keys to every EHR System and Miner randomly, any entity

knows nothing about any other secret keys. Coupled with

no collusion of our threat model, the security of distributed

Paillier cryptosystem ensures that the i-th support is private

for j-th EHR System, let alone Miner, where i 2 ½n� and
j 2 ½n�nfig. In other words, for i 2 ½n�,

REAL
EHR System
A Yið Þ

n o
�c IDEAL

EHR System
S Yið Þ

n o
:

REALMiner
A Yið Þ

� �
�c IDEALMiner

S Yið Þ
� �

:

The Miner also performs the modular multiplication after

receiving the n ciphertexts uploaded from EHR Systems.

Due to semi-honest Miner, we can easily conclude that the

Miner is secure against a semi-honest adversary AMiner
S

corrupting the Miner in the real world, that is,

REALMiner
A Y1; . . .; Yn; Yð Þ

� �
�c IDEALMiner

S Y1; . . .; Yn; Yð Þ
� �

:

h

Lemma 2 During the Decryption phase, every EHR Sys-

tem and Miner are secure against honest-but-curious

AEHR System
S and AMiner

S in the real world respectively.

Proof The semi-honest model requires every EHR System

and Miner to strictly follow algorithm 7 and output correct

results. The restriction of no collusion among EHR Sys-

tems and Miner makes it impossible for probabilistic

polynomial time adversary to obtain the essential sum of

Algorithm 6: Encryption Algorithm (Every EHR System+Miner)
Input: The public key is pk = (N, g).

1 Randomly chooses ri ∈ Z
∗
N2 , the i-th EHR System computes

Yi = gCcount(i)rN
i mod N2 for all i ∈ [n].

2 Every EHR System sends Yi to Miner, and Miner performs modular

multiplication as Y =
n

i=1
Yi mod N2.

Output: Y .

Algorithm 7: Decryption Algorithm (Every EHR System+Miner)
Input: The ciphertext Y .

1 After receiving the ciphertext Y from Miner, the i-th EHR system
computes DYi = Y λi mod N2 for i ∈ [n], and sends DYi back to
Miner.

2 Miner performs DCcount = Y λm ·
n

i=1
DYi mod N2, and obtains

the final mining result by

Ccount =
L DCcount mod N2

L (g mod N2)
mod N.

Output: Ccount.
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secret keys k1 þ k2 þ � � � þ kn þ km. That is, every EHR

System cannot know the final mining result as Miner, i.e.,

REAL
EHR System
A Yð Þ

n o
�c IDEAL

EHR System
S Yð Þ

n o

and

REAL
EHR System
A DYið Þ

n o
�c IDEAL

EHR System
S DYið Þ

n o

due to the distributed Paillier cryptosystem.

In terms of Miner, as he honestly performs the

Algorithm 7, with the help of other semi-honest EHR

systems, the final mining result can be acquired by him as

desired.

According to the two lemmas described above, we show

that our scheme is secure. For the Miner, he learns nothing

except the support sum of the EHR Systems. In terms of

every EHR System, they learns nothing about the supports

of any other EHR Systems and the mining result of

Mine-

r. h

4.5 Performance evaluation

In this section, we illustrate the efficiency of our PPDARM

scheme from the perspective of theoretical analysis and

experimental analysis.

4.5.1 Theoretical analysis

The theoretical performance of computational complexity,

communication complexity and communication overhead

is shown in Table 3.

• As the Set-up Phase describes, only the trusted insti-

tution KGC randomly distributes public key and secret

keys to every EHR system and Miner, then the com-

putational complexity, communication complexity and

communication overhead for every EHR system and

Miner are all none.

• During the Encryption Phase, every EHR System

encrypts his own support with distributed Paillier

cryptosystem and sends the ciphertext to Miner, and

the Miner performs n � 1 number of modular multipli-

cations modulo N2, which can be reduced dlog ðn � 1Þe
number of modular multiplications with dichotomy, i.e.,

with computational complexity Oðlog2NÞ. Considering
the encryption algorithm of distributed Paillier cryp-

tosystem as described in Sect. 2.3, the computational

complexity for every EHR system is two modular

exponentiations modulo N2 and a modular multiplica-

tion modulo N2, that is, Oðlog3NÞ. In terms of the

communication complexity, every EHR System sends

his ciphertext to Miner, so the communication

complexity and communication overhead for every

EHR System are O(1) and jYij2 ¼ 2log N respectively.

Miner has no interaction with EHR Systems and only

performs modular multiplications, so the communica-

tion complexity and communication overhead for every

EHR System are both empty.

• In Algorithm 7, Miner sends Y to every EHR system to

seek for partial decryption. In turn, every EHR system

transmits his result to Miner; Miner also decrypts Y with

his own secret key and multiplies the n þ 1 results. A

division operation ends the algorithm and Miner obtains

the final mining result. For every EHR system, the

computational complexity is a modular exponentiation

with Oðlog3NÞ; he makes interactions with Miner with

communication complexity O(1) and communication

overhead jDYij2 ¼ 2log N respectively. As for Miner,

he performs modular exponentiation, n modular multi-

plications and division, of computational complexity

Oðlog3NÞ. He makes interactions with n EHR systems,

so the communication complexity and communication

overhead for Miner are O(n) and njY j2 ¼ 2nlog N

respectively.

From Table 3, we can easily see that the theoretical per-

formance of ours and [19] are different due to the system

model, that is, we assign the Miner to be the unique insider

who knows the final mining results while [19] makes every

EHR system obtain the final mining results. From the

perspective of the whole PPDARM scheme, the computa-

tional, communication complexity and communication

overhead for every EHR system in ours is relatively

smaller than in [19], due to jNj2 ¼ jpj2 � 2048 bits for the

consideration of security in real life. Coupled with the

security analysis in Sects. 3.2 and 4.4, our PPDARM

scheme is more efficient and practical.

4.5.2 Experimental analysis

In this section, we show the performance of our scheme by

conducting tests on personal computers utilizing the NTL

library [25]. The environment is listed as follows:

• CPU: Intel(R) Core(TM) i5-8300H 2.30GHz

• RAM: 8.00GB

• OS: Windows 10

The datasets are from [26] following the routine of [19].

We focus on the 14 attributes affecting the heart disease as

Domadiya et al. claimed. In our experiment, the datasets in

[26] are all composed of 0, 1. For example, the third

attribute ‘‘Type of chest pain: (1=typical angina, 2=atypical

angina, 3=non-anginal pain, 4=asymptomatic)’’, we make a

transfer: ‘‘1=typical angina’’ , ð1; 0; 0; 0Þ, ‘‘2=atypical

angina’’ , ð0; 1; 0; 0Þ,‘‘=non-anginal pain’’ , ð0; 0; 1; 0Þ,

Wireless Networks (2022) 28:303–317 313

123



and ‘‘4=asymptomatic’’ , ð0; 0; 0; 1Þ, likewise for other

attributes. The dimensions of the datasets enlarged a little

without changing the values of the heart disease. Under this

circumstance, the performance comparisons are evaluated.

To achieve the security requirement, we choose jNj2 ¼
jpj2 � 2048 bits in distributed Paillier cryptosystem and

[19] respectively to ensure security. Some common oper-

ations are first evaluated in Table 4. We set the number of

EHR Systems ranging from 4 to 10 as Domadiya et al. [19]

Table 4 Average running time

of common operations
jNj2 Modular multiplication modulo N Modular exponentiation modulo N

2048 bits 1.125ms 2458.032ms

3072 bits 2.452ms 8099.641ms

Table 5 Comparisons of computation cost with jNj2 ¼ jpj2 ¼ 2048; 3072 Bits for n ¼ 5

Proposed approach Existing approach [19]

Phase jNj2 ¼ 2048 bits jNj2 ¼ 3072 bits Phase jpj2 ¼ 2048 bits jpj2 ¼ 3072 bits

EHR Systems Miner EHR Systems Miner EHR Systems EHR Systems

Set-up 0s 0s 0s 0s Set-up 4.916s 16.199s

Encryption 4.917s 2.250ms 16.202s 4.904ms Encryption 2.255ms 4.905ms

Decryption 2.458s 4.919s 9.000s 16.207s Sum 2.460s 8.105s

Total 7.375s 4.921s 25.202s 21.133s Total 7.378s 24.309s

(a) Comparisons with |N |2 = |p|2 = 2048
Bits for n = 5.

(b) Comparisons with |N |2 = |p|2 = 3072
Bits for n = 5.

Fig. 3 Comparisons of computation cost

Table 6 Comparisons of communication overhead

Proposed approach Existing approach [19]

jNj2 ¼ 2048 bits jNj2 ¼ 3072 bits jpj2 ¼ 2048 bits jpj2 ¼ 3072 bits

Phase EHR systems Miner EHR systems Miner Phase EHR systems EHR systems

Set-up – – – – Set-up 213n bits 3 � 212n bits

Encryption 212n bits – 3 � 211n bits – Encryption 213nðn � 1Þ bits 3 � 212nðn � 1Þ bits
Decryption 212n bits 212n bits 3 � 211n bits 3 � 211n bits Sum – –

Total 213n bits 212n bits 3 � 212n bits 3 � 211n bits Total 213n2 bits 3 � 212n2 bits

314 Wireless Networks (2022) 28:303–317

123



to test the performance of our proposal and [19] including

computation cost and communication overhead.

Computation cost. The comparison of running time

between our proposal and [19] is shown in Table 5 with

jNj2 ¼ jpj2 ¼ 2048; 3072 bits for random n ¼ 5. Consid-

ering that every EHR System can perform operations in

parallel, the running time for every EHR System is also

corresponding to the one for all EHR Systems. We also

represent the comparisons of computation cost through bar

graph as shown in Fig. 3. We claim that Fig. 3 clearly

shows the running time of our proposed scheme and [19]

are almost equal for EHR Systems. In terms of the time for

Miner, it is a little more for ours than [19]. From these

results, our PPDARM scheme is approximately efficient as

the existing scheme in the literature.

Communication overhead. The communication over-

head of our proposal and [19] is presented in Table 6,

which clearly shows that our scheme yields less interac-

tions when comparing to [19]. We represent the compar-

ison of communication overhead through a bar graph as

shown in Fig. 4. It is apparent that our PPDARM scheme is

more efficient in terms of communication overhead.

5 Conclusion

In this paper, we focus on the privacy-preserving dis-

tributed association rule mining scheme based on medical

data. We first present the weakness of Domadiya et al.’s

PPDARM scheme: 1) the support of the itemsets from

every EHR can be easily recovered by a modular expo-

nentiation; 2) the performance analyses are not exactly

correct. On the basis of this situation, the distributed

Paillier cryptosystem is utilized to construct our PPDARM

scheme, avoiding the same flaws of Domadiya et al.. Per-

formance evaluations including theoretical analysis and

experimental analysis demonstrate our proposal is more

efficient and feasible, especially in communication.
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