Skip to main content
Log in

TkTC: A framework for top-k text classification of multimedia computing in wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The development of wireless networks and multimedia computing generates a large number of texts, which makes text classification become an important task. However, due to the complex semantic information of the text, traditional text classification that aims to predict the most possible label among all labels may not predict the correct label for the text. Thus, we hope the classifier could “recommend” k labels for each text, as long as the ground truth label is included, we call this top-k text classification. Recent work of top-k classification focuses on constructing a top-k classification loss function without considering the position of the ground truth label. In this paper, we propose \(\hbox{T}k\hbox{TC}\): a framework for top-k text classification, where a novel loss function that considers the position of ground truth label and the number of prediction simultaneously. Finally, we conduct extensive experiments on different datasets, and the experimental results show that our method outperforms state-of-the-art baselines in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gao, H., Liu, C., Yin, Y., Xu, Y., & Li, Y. (2021). A hybrid approach to trust node assessment and management for vanets cooperative data communication: Historical interaction perspective. IEEE Transactions on Intelligent Transportation Systems.

  2. Gao, H., Zhang, Y., Miao, H., Durán Barroso, R. J., & Yang, X. (2021). SDTIOA: Modeling the timed privacy requirements of IoT service composition: A user interaction perspective for automatic transformation from BPEL to timed automata. Mobile Networks and Applications, 1–26.

  3. Yin, Y., Huang, Q., Gao, H., & Xu, Y. (2020). Personalized APIs recommendation with cognitive knowledge mining for industrial systems. IEEE Transactions on Industrial Informatics.

  4. Yin, Y., Cao, Z., Yueshen, X., Gao, H., Li, R., & Mai, Z. (2020). Qos prediction for service recommendation with features learning in mobile edge computing environment. IEEE Transactions on Cognitive Communications and Networking, 6(4), 1136–1145.

    Article  Google Scholar 

  5. Yueshen, X., Yinchen, W., Gao, H., Song, S., Yin, Y., & Xiao, X. (2021). Collaborative apis recommendation for artificial intelligence of things with information fusion. Future Generation Computer Systems, 125, 471–479.

    Article  Google Scholar 

  6. Deng, X., Li, Y., Weng, J., & Zhang, J. (2019). Feature selection for text classification: A review. Multimedia Tools and Applications, 78(3), 3797–3816.

    Article  Google Scholar 

  7. Shrivastava, K., Kumar, S., & Jain, D. K. (2019). An effective approach for emotion detection in multimedia text data using sequence based convolutional neural network. Multimedia Tools and Applications, 78(20), 29607–29639.

    Article  Google Scholar 

  8. Yuvaraj, N., Srihari, K., Dhiman, G., Somasundaram, K., Sharma, A., Rajeskannan, S., Soni, M., Gaba, G. S., AlZain, M. A., & Masud, M. (2021). Nature-inspired-based approach for automated cyberbullying classification on multimedia social networking. Mathematical Problems in Engineering, 2021.

  9. Dai, P., Iurgel, U., & Rigoll, G. (2003). A novel feature combination approach for spoken document classification with support vector machines. In Proceedings of the multimedia information retrieval workshop (pp. 1–5). Citeseer.

  10. Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. In: Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies (pp. 142–150).

  11. Wang, S.I., & Manning, C.D. (2012). Baselines and bigrams: Simple, good sentiment and topic classification. In Proceedings of the 50th annual meeting of the association for computational linguistics (Volume 2: Short Papers) (pp. 90–94).

  12. Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for modelling sentences. arXiv:1404.2188.

  13. McCallum, A. K. (1999). Multi-label text classification with a mixture model trained by EM. In AAAI 99 workshop on text learning. Citeseer.

  14. Liu, J., Chang, W.-C., Wu, Y., & Yang, Y. (2017). Deep learning for extreme multi-label text classification. In Proceedings of the 40th international ACM SIGIR conference on research and Development in information retrieval (pp. 115–124).

  15. Nam, J., Kim, J., Mencía, E. L., Gurevych, I., Fürnkranz, J. (2014). Large-scale multi-label text classification-revisiting neural networks. In Joint european conference on machine learning and knowledge discovery in databases (pp. 437–452). Springer.

  16. Lapin, M., Hein, M., & Schiele, B. (2015) Top-k multiclass SVM. arXiv:1511.06683.

  17. Chang, X., Yu, Y.-L., & Yang, Y. (2017). Robust top-k multiclass SVM for visual category recognition. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 75–83).

  18. Chu, D., Rui, L., Li, J., Xintong, Yu., Zhang, C., & Tao, Q. (2018). Optimizing top-\(k\) multiclass SVM via semismooth newton algorithm. IEEE Transactions on Neural Networks and Learning Systems, 29(12), 6264–6275.

    Article  MathSciNet  Google Scholar 

  19. Settles, B. (2009). Active learning literature survey.

  20. Berrada, L., Zisserman, A., & Kumar, M. P. (2018). Smooth loss functions for deep top-k classification. arXiv:1802.07595.

  21. Tan, H. (2019). An exact penalty method for top-k multiclass classification based on l0 norm minimization. In Proceedings of the 2019 11th international conference on machine learning and computing (pp. 338–343).

  22. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.

  23. De Boer, P.-T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on the cross-entropy method. Annals of Operations Research, 134(1), 19–67.

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, Z., Badrinarayanan, V., Lee, C.-Y., Rabinovich, A. (2018). Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks. In International conference on machine learning (pp. 794–803). PMLR.

  25. Wang, Y., Wang, L., Li, Y., He, D., Chen, W., Liu, T.-Y. (2013). A theoretical analysis of ndcg ranking measures. In Proceedings of the 26th annual conference on learning theory (COLT 2013), volume 8, p. 6. Citeseer.

  26. Sun, A., Lim, E.-P., & Liu, Y. (2009). On strategies for imbalanced text classification using SVM: A comparative study. Decision Support Systems, 48(1), 191–201.

    Article  Google Scholar 

  27. Baoxun, X., Guo, X., Ye, Y., & Cheng, J. (2012). An improved random forest classifier for text categorization. JCP, 7(12), 2913–2920.

    Google Scholar 

  28. Genkin, A., Lewis, D. D., & Madigan, D. (2007). Large-scale Bayesian logistic regression for text categorization. Technometrics, 49(3), 291–304.

    Article  MathSciNet  Google Scholar 

  29. Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., Xu, B. (2016). Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling. arXiv:1611.06639.

  30. Zhang, M.-L., & Zhou, Z.-H. (2007). ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7), 2038–2048.

    Article  MATH  Google Scholar 

  31. Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification. Machine Learning, 85(3), 333.

    Article  MathSciNet  Google Scholar 

  32. Yang, P., Sun, X., Li, W., Ma, S., Wu, W., Wang, H. (2018) SGM: Sequence generation model for multi-label classification. arXiv:1806.04822.

  33. Yan, C., Luo, M., Liu, H., Li, Z., & Zheng, Q. (2018). Top-k multi-class SVM using multiple features. Information Sciences, 432, 479–494.

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, S., Johns, E., Davison, A. J. (2019). End-to-end multi-task learning with attention. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1871–1880).

  35. Liu, S., Liang, Y., & Gitter, A. (2019). Loss-balanced task weighting to reduce negative transfer in multi-task learning. In Proceedings of the AAAI conference on artificial intelligence Vol. 33 (pp. 9977–9978).

  36. Guo, M., Haque, A., Huang, D.-A., Yeung, S., Fei-Fei, L. (2018) Dynamic task prioritization for multitask learning. In Proceedings of the European conference on computer vision (ECCV) (pp. 270–287).

  37. Weston, J., & Watkins, C. (1998). Multi-class support vector machines. Technical report, Citeseer.

  38. Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the trade (pp. 421–436). Springer.

  39. Cardoso-Cachopo, A. (2007). Improving methods for single-label text categorization. PdD Thesis, Instituto Superior Tecnico, Universidade Tecnica de Lisboa.

  40. “Ohsumed Corpus”. https://davis.wpi.edu/xmdv/datasets/ohsumed.html.

  41. Kowsari, K., Brown, D. E., Heidarysafa, M., Meimandi, K. J., Gerber, M. S., & Barnes L. E. (2017) Hdltex: Hierarchical deep learning for text classification. In 2017 16th IEEE international conference on machine learning and applications (ICMLA) (pp. 364–371). IEEE.

Download references

Acknowledgements

This research was partially sponsored by the following Funds: National Key R&D Program of China (2018YFB1402800), the Fundamental Research Funds for the Provincial Universities of Zhejiang (RF-A2020007) and Zhejiang Lab (2020AA3AB05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liu, Y., Cao, B. et al. TkTC: A framework for top-k text classification of multimedia computing in wireless networks. Wireless Netw 29, 1523–1534 (2023). https://doi.org/10.1007/s11276-021-02878-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02878-7

Keywords

Navigation