Skip to main content
Log in

An improvement of AODV protocol for the overhead reduction in scalable dynamic wireless ad hoc networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, the problem of improving reliability and reducing routing overhead in dynamic scalable Wireless Ad hoc NETworks (WANETs) is considered. Having in mind that the number of mobile network users is constantly growing, dynamic network topology and scalability need to be taken into account when designing or choosing an appropriate routing protocol. In this paper, we have proposed an improvement of Ad hoc On Demand Distance Vector (AODV) protocol, called Neighborhood-Density AODV (ND-AODV) to reduce routing overhead in large scale dynamic WANETs. Instead of hop-count metric, our protocol uses Expected Transmission Count (ETX) based metric, called Power Light Reverse ETX (PLRE), which significantly improves the reliability of AODV protocol. Proposed protocol with metric, ND-AODV-PLRE, is compared to AODV and Probabilistic AODV (PAODV) protocols with PLRE metric in the terms of basic key performance indicators such as throughput, packet loss ratio, overhead, average, initial, and jitter of end to end delay. In order to show that it is suitable for various types of large scale dynamic WANETs, the ND-AODV-PLRE protocol is tested in two scenarios, one using the Manhattan Grid, and the other Random Waypoint mobility model. The results obtained in Network Simulator 3 (NS-3) have shown significant improvements of the proposed protocol in both scenarios. NS-3 implementation code is made publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

15.11.2021.

Code availability

15.11.2021.

References

  1. Perkins, C., Belding–Royer, E., & Das, S. (2003) Ad hoc on-demand distance vector (AODV) routing, RFC 3561, IETF.

  2. Jevtic, N., & Malnar, M. (2019). Novel ETX-based metrics for overhead reduction in dynamic ad hoc networks. IEEE Access, 7, 116490–116504. https://doi.org/10.1109/ACCESS.2019.2936191

    Article  Google Scholar 

  3. Malnar, M., Neskovic, N., & Neskovic, A. (2014). Novel power-based routing metrics for multi-channel multi-interface wireless mesh networks. Wireless Net., 20(1), 41–51. https://doi.org/10.1007/s11276-013-0587-8

    Article  Google Scholar 

  4. De Couto, S., Aguayo, D., Bicket, J., & Morris, R. (2005). A high–throughput path metric for multi-hop wireless routing. Wireless Networks, 11(4), 419–434. https://doi.org/10.1007/s11276-005-1766-z

    Article  Google Scholar 

  5. NS-3. [Online]. Available: http://www.nsnam.org/

  6. Nissar, N., Naja, N., & Jamali, A. (2015). A review and a new approach to reduce routing overhead in MANETs. Wireless Networks, 21(4), 1119–1139. https://doi.org/10.1007/s11276-014-0835-6

    Article  Google Scholar 

  7. Source Code of ND-AODV. [Online]. Available: https://github.com/neje/WN2021.git

  8. Sainia, T., & Sharmab, S. (2020). Recent advancements, review analysis, and extensions of the AODV with the illustration of the applied concept. Ad hoc Networks, 103, 1–20. https://doi.org/10.1016/j.adhoc.2020.102148

    Article  Google Scholar 

  9. Shahabi, S., Ghazvini, M., & Bakhtiarian, M. (2016). A modified algorithm to improve security and performance of AODV protocol against black hole attack. Wireless Networks, 22(5), 1505–1511. https://doi.org/10.1007/s11276-015-1032-y

    Article  Google Scholar 

  10. Delkesh, T., & Jamali, M. (2019). EAODV: detection and removal of multiple black hole attacks through sending forged packets in MANETs. Journal of Ambient Intelligence and Humanized Comp., 10(5), 1897–1914. https://doi.org/10.1007/s12652-018-0782-7

    Article  Google Scholar 

  11. Gurung, S., & Chauhan, S. (2019). A dynamic threshold based algorithm for improving security and performance of AODV under black-hole attack in MANET. Wireless net., 25(4), 1685–1695. https://doi.org/10.1007/s11276-017-1622-y

    Article  Google Scholar 

  12. Zant, M., & Yasin, A. (2019). Avoiding and isolating flooding attack by enhancing AODV MANET protocol (AIF_AODV). Hindawi security and comm. net., 2019, 1–13. https://doi.org/10.1155/2019/8249108

    Article  Google Scholar 

  13. Gurung, S., & Chauhan, S. (2018). A novel approach for mitigating route request flooding attack in MANET. Wireless Networks, 24(8), 2899–2914. https://doi.org/10.1007/s11276-017-1515-0

    Article  Google Scholar 

  14. Sethuraman, P., & Kannan, N. (2017). Refined trust energy-ad hoc on demand distance vector (ReTE-AODV) routing algorithm for secured routing in MANET. Wireless Networks, 23(7), 2227–2237. https://doi.org/10.1007/s11276-016-1284-1

    Article  Google Scholar 

  15. DeAlmeida, T., & Godoy, E. (2016). Zig Bee wireless dynamic sensor networks: feasibility analysis and implementation guide. IEEE Sensors Journal, 16(11), 4614–4621. https://doi.org/10.1109/JSEN.2016.2542063

    Article  Google Scholar 

  16. Mu, J. (2017). An improved AODV routing for the zigbee heterogeneous networks in 5G environment. Ad Hoc Networks, 58, 13–24. https://doi.org/10.1016/j.adhoc.2016.12.002

    Article  Google Scholar 

  17. Mu, J. (2014). A directional broadcasting algorithm for routing discovery in ZigBee networks. EURASIP Journal on Wireless Communications and Networks. https://doi.org/10.1186/1687-1499-2014-94

    Article  Google Scholar 

  18. Aliesawi, S., Mubarek, F., Alheeti, K., & Alfahad, N. (2018). Urban-AODV: an improved AODV protocol for vehicular ad-hoc networks in urban environment. International Journal of Engineering & Technology, 7(4), 3030–3036. https://doi.org/10.14419/ijet.v7i4.15031

    Article  Google Scholar 

  19. Zhang, D., Gong, C., Zhang, T., Zhang, J., & Piao, M. (2021). A new algorithm of clustering AODV based on edge computing strategy in IOV. Wireless Networks, 27(4), 2891–2908. https://doi.org/10.1007/s11276-021-02624-z

    Article  Google Scholar 

  20. Sharma, D., Patra, A., & Kumar, C. (2017). P-AODV: a priority based route maintenance process in mobile ad hoc networks. Wireless Personal Communications, 95(4), 4381–4402. https://doi.org/10.1007/s11277-017-4085-7

    Article  Google Scholar 

  21. Malnar, M., & Jevtic, N. (2020). A framework for performance evaluation of VANETs using NS-3 simulator. Promet - Traffic & Transportation, 32(2), 255–268. https://doi.org/10.7307/ptt.v32i2.3227

    Article  Google Scholar 

  22. Draves, R., Padhye, J., & Zill, B. (2004). Routing in multi-radio, multi-hop wireless mesh networks, In International conference on mobile computing and networking (pp. 114–128), ACM.

  23. Zhu, J., Zhao, H., & Xu, J. (2009). An energy balanced reliable routing metric in WSNs. Wireless Sensor Network, 1(1), 1–60. https://doi.org/10.4236/wsn.2009.11004

    Article  Google Scholar 

  24. Ye, R., Boukerche, A., Wang, H., Zhou, X., & Yan, B. (2018). E3TX: An energy-efficient expected transmission count routing decision strategy for wireless sensor networks. Wireless Network, 24(7), 2483–2496. https://doi.org/10.1007/s11276-017-1483-4

    Article  Google Scholar 

  25. Xuelian, C., Ying, H., Chunchun, Zh., Lina, Zh., & Changle, L. (2014). LSGO: Link state aware geographic opportunistic routing protocol for VANETs. EURASIP Journal on Wireless Comm. and Networking. https://doi.org/10.1186/1687-1499-2014-96

    Article  Google Scholar 

  26. Sadatpour, V., Zargari, F., & Ghanbari, M. (2019). A collision aware opportunistic routing protocol for VANETs in highways. Wireless Personal Communications, 109(1), 1–14. https://doi.org/10.1007/s11277-019-06557-x

    Article  Google Scholar 

  27. Boushaba, M., Hafid, A., & Gendreau, M. (2016). Source-based routing in wireless mesh networks. IEEE Systems Journal, 10(1), 262–270. https://doi.org/10.1109/JSYST.2014.2317453

    Article  Google Scholar 

  28. Sanmartin, P., Rojas, A., Fernandez, L., Avila, K., Jabba, D., & Valle, S. (2018). Sigma routing metric for RPL protocol. Sensors, 18(4), 1277–1295. https://doi.org/10.3390/s18041277

    Article  Google Scholar 

  29. Tall, H., Chalhoub, G., & Misson, M. (2018). W-ETX: worst-case expected transmission Count routing protocol for convergecast WSNs. In International conference on performance evaluation and modeling in wired and wireless networks (PEMWN) (pp. 1–6), IEEE.

  30. Bugarcic, P., Malnar, M., & Jevtic, N. (2019). Modifications of AODV protocol for VANETs: performance analysis in NS-3 simulator. In Telecommunication forum (TELFOR 2019) (pp. 731–734), IEEE.

  31. Source Code of NPAF. [Online]. Available: https://github.com/neje/npaf.git

  32. BONNMOTION: A mobility scenario generation and analysis tool. University of Bonn. Available: http://net.cs.uni-bonn.de/wg/cs/applications/bonnmotion/

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have equal contribution to the paper.

Corresponding author

Correspondence to Marija Malnar.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malnar, M., Jevtic, N. An improvement of AODV protocol for the overhead reduction in scalable dynamic wireless ad hoc networks. Wireless Netw 28, 1039–1051 (2022). https://doi.org/10.1007/s11276-022-02890-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02890-5

Keywords

Navigation