Skip to main content
Log in

A triple band dual-polarized multi-slotted antenna array for base station applications

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This article presents a ± 45° dual-polarized triple-band dipole antenna array for 5G base station applications. Each antenna element consists of three main parts: radiator, feeding baluns, and reflector. The profile antenna array is designed to cover two bands from n77 and one band from n79 5G NR frequency spectrum. The proposed antenna element and array are optimized with ANSYS 18.2 HFSS simulator and then fabricated and fully characterized. The obtained measured impedance bandwidths resulted in 3.6–3.75 GHz, 4.1–4.25 GHz, and 4.82–4.95 GHz, with a gain of almost 8.12 dBi and 70.7° half-power beam width (HPBW). Once characterized, such an elementary element has been used in the design, realization and test of a 1 × 8 antenna array that exhibited a measured gain 16.65 dBi with 69° HPBW respectively. The antenna array operates in 3.43–3.75 GHz, 4.13–4.30 GHz, and 4.80–4.95 GHz with 15 dB return loss. The triple-band dual-polarized feature with very high isolation, cross-polarization discrimination ratio (XPD) and front to back ratio (FBR) makes this profile antenna array a suitable candidate for 5G base station applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhou, S. G., Tan, P. K., & Chio, T. H. (2012). Low-profile, wideband dual-polarized antenna with high isolation and low cross polarization. IEEE Antennas and Wireless Propagation Letters, 11, 1032–1035.

    Google Scholar 

  2. Li, B., Yin, Y. Z., Hu, W., Ding, Y., & Zhao, Y. (2012). Wideband dual-polarized patch antenna with low cross polarization and high isolation. IEEE Antennas and Wireless Propagation Letters, 11, 427–430.

    Google Scholar 

  3. Wu, B. Q., & Luk, K. M. (2009). A broadband dual-polarized magneto-electric dipole antenna with simple feeds. IEEE Antennas and Wireless Propagation Letters, 8, 60–63.

    Google Scholar 

  4. Xue, Q., Liao, S. W., & Xu, J. H. (2013). A differentially-driven dual-polarized magneto-electric dipole antenna. IEEE Transactions on Antennas and Propagation, 61(1), 425–430.

    Google Scholar 

  5. Siu, L., Wong, H., & Luk, K. M. (2009). A dual-polarized magneto-electric dipole with dielectric loading. IEEE Transactions on Antennas and Propagation, 57(3), 616–623.

    Google Scholar 

  6. Chu, Q. X., & Luo, Y. (2013). A broadband unidirectional multi-dipole antenna with very stable beamwidth. IEEE Transactions on Antennas and Propagation, 61(5), 2847–2852.

    Google Scholar 

  7. Luo, Y., & Chu, Q. X. (2015). Oriential crown-shaped differentially fed dual-polarized multidipole antenna. IEEE Transactions on Antennas and Propagation, 63(11), 4678–4684.

    MathSciNet  MATH  Google Scholar 

  8. Chu, Q. X., Wen, D. L., & Luo, Y. (2015). A broadband ±45° dual-polarized antenna with Y-shaped feeding lines. IEEE Transactions on Antennas and Propagation, 63(2), 483–490.

    Google Scholar 

  9. Cui, Y. H., Li, R. L., & Fu, H. Z. (2014). A broadband dual-polarized planar antenna for 2G/3G/LTE base stations. IEEE Transactions on Antennas and Propagation, 62(9), 4836–4840.

    MATH  Google Scholar 

  10. Bao, Z., Nie, Z., & Zong, X. (2014). A novel broadband dual-polarization antenna utilizing strong mutual coupling. IEEE Transactions on Antennas and Propagation, 62(1), 450–454.

    Google Scholar 

  11. Gou, Y., Yang, S., Li, J., & Nie, Z. (2014). A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications. IEEE Transactions on Antennas and Propagation, 62(8), 4392–4395.

    MATH  Google Scholar 

  12. Bao, Z., Nie, Z. P., & Zong, X. Z. (2014). A novel broadband dual-polarization antenna utilizing strong mutual coupling. IEEE Antennas and Wireless Propagation Letters, 62, 450–454.

    Google Scholar 

  13. Chen, Z. N., & Chia, M. Y. W. (2006). Broadband planar antennas: design and applications. Wiley.

    Google Scholar 

  14. Larsson, E. G., & Poor, H. V. (2016). Joint beamforming and broadcasting in massive MIMO. IEEE Transactions on Wireless Communications, 15, 3058–3070.

    Google Scholar 

  15. Tang, H., & Nie, Z. P. (2018). RMV antenna selection algorithm for massive MIMO. IEEE Signal Processing Letters, 25, 239–242.

    Google Scholar 

  16. Tang, H., & Nie, Z. P. (2018). Massive MIMO antenna selection algorithms based on iterative swapping. IET Electronics Letters, 54, 190–192.

    Google Scholar 

  17. Mahmoud, K. R., & Montaser, A. M. (2018). Performance of tri-band multi-polarized array antenna for 5G mobile base station adopting polarization and directivity control. IEEE Access, 6, 8682–8694.

    Google Scholar 

  18. Chu, H., & Guo, Y. X. (2017). A filtering dual-polarized antenna subarray targeting for base stations in millimeter-wave 5G wireless communications. IEEE Transactions on Components, Packaging and Manufacturing Technology, 7, 964–973.

    Google Scholar 

  19. Gao, Y., Ma, R., Wang, Y., Zhang, Q., & Parini, C. (2016). Stacked patch antenna with dual-polarization and low mutual coupling for massive MIMO. IEEE Transactions on Antennas and Propagation, 64, 4544–4549.

    MathSciNet  MATH  Google Scholar 

  20. Saxena, S., Kanaujia, B. K., Dwari, S., Kumar, S., & Tiwari, R. (2018). MIMO antenna with built-in circular shaped isolator for sub-6 GHz 5G applications. IET Electronics Letters, 54, 478–480.

    Google Scholar 

  21. Huang, H., Li, X., & Liu, Y. (2018). 5G MIMO antenna based on vector synthetic mechanism. IEEE Antennas and Wireless Propagation Letters, 17, 1052–1055.

    Google Scholar 

  22. An, W., Li, Y., Fu, H., Ma, J., Chen, W., & Feng, B. (2018). Low-profile and wideband microstrip antenna with stable gain for 5G wireless applications. IEEE Antennas and Wireless Propagation Letters, 17, 621–624.

    Google Scholar 

  23. Gou, Y. S., Yang, S. W., Li, J. X., & Nie, Z. P. (2014). A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications. IEEE Transactions on Antennas and Propagation, 62, 4392–4395.

    MATH  Google Scholar 

  24. Zheng, D. Z., & Chu, Q. X. (2017). A multimode wideband +/- 45 degrees dual-polarized antenna with embedded loops. IEEE Antennas and Wireless Propagation Letters, 16, 633–636.

    Google Scholar 

  25. Huang, H., Liu, Y., & Gong, S. X. (2017). A dual-broadband, dual-polarized base station antenna for 2G/3G/4G applications. IEEE Antennas and Wireless Propagation Letters, 16, 1111–1114.

    Google Scholar 

  26. X., Liu, S., He, H., Zhou, J., Xie, H., Wang (2006) A novel low-profile, dual-band, dual-polarization broadband array antenna for 2G/3G base station, presented at the IET Int. Conf. Wireless, Mobile, Multimedia Networks, Hangzhou, China

  27. Cui, G., Zhou, S.-G., Zhao, G., & Gong, S.-X. (2016). A compact dual-band dual-polarized antenna for base station application. Progress in Electromagnetics Research C, 64, 61–70.

    Google Scholar 

  28. He, Y., Pan, Z., Cheng, X., He, Y., Qiao, J., & Tentzeris, M. M. (2015). A novel dual-band, dual-polarized, miniaturized and low-profile base station antenna. IEEE Transactions on Antennas and Propagation, 63(12), 5399–5408.

    MathSciNet  MATH  Google Scholar 

  29. Oh, T., Lim, Y. G., Chae, C. B., & Lee, Y. (2015). Dual-polarization slot antenna with high cross-polarization discrimination for indoor small-cell MIMO systems. IEEE Antennas and Wireless Propagation Letters, 14, 374–377.

    Google Scholar 

  30. Luo, Y., Chu, Q. X., & Wen, D. L. (2016). A ±45º dual-polarized base-station antenna with enhanced cross-polarization discrimination via addition of four parasitic elements placed in a square contour. IEEE Transactions on Antennas and Propagation, 64, 1514–1519.

    MathSciNet  MATH  Google Scholar 

  31. Caso, R., Serra, A. A., Buffi, A., Rodriguez-Pino, M., Nepa, P., & Manara, G. (2011). Dual-polarised slot-coupled patch antenna excited by a square ring slot. IET Microwaves, Antennas & Propagation, 5(5), 605–610.

    Google Scholar 

  32. Lu, J., Kuai, Z., Zhu, X., & Zhang, N. (2011). A high-isolation dualpolarization microstrip patch antenna with quasi-cross-shaped coupling slot. IEEE Transactions on Antennas and Propagation, 59(7), 2713–2717.

    Google Scholar 

  33. Xie, J. J., Yin, Y. Z., Wang, J. H., & Liu, X. L. (2013). Wideband dual polarized electromagnetic fed patch antenna with high isolation and low cross-polarization. Electronics Letters, 49(3), 171–173.

    Google Scholar 

  34. Zhu, F., Gao, S., Ho, A. T. S., Abd-Alhameed, R. A., See, C. H., Brown, T. W. C., Li, J., Wei, G., & Xu, J. (2014). Ultra-wideband dual-polarized patch antenna with four capacitively coupled feeds. IEEE Transactions on Antennas and Propagation, 62(5), 2440–2449.

    Google Scholar 

  35. Gao, Y., Ma, R., Wang, Y., Zhang, Q., & Parini, C. (2016). Stacked patch antenna with dual-polarization and low mutual coupling for massive MIMO. IEEE Transactions on Antennas and Propagation, 64(10), 445–4449.

    MathSciNet  MATH  Google Scholar 

  36. Hua, C., Li, R., Wang, Y., & Lu, Y. (2018). Dual-polarized filtering antenna with printed Jerusalem-cross radiator. IEEE Access, 6, 9000–9005.

    Google Scholar 

  37. Liu, Y., Wang, S., Wang, X., & Jia, Y. (2019). A differentially fed dual-polarized slot antenna with high isolation and low profile for base station application. IEEE Antennas and Wireless Propagation Letters, 18(2), 303–307.

    Google Scholar 

  38. Huang, H., Li, X., & Liu, Y. (2019). A low-profile, dual-polarized patch antenna for 5G MIMO application. IEEE Transactions on Antennas and Propagation, 67(2), 1275–1279.

    Google Scholar 

  39. Wen, L.-H., Gao, S., Luo, Q., Yang, Q., Hu, W., & Yin, Y. (2019). A low-cost differentially driven dual-polarized patch antenna by using open-loop resonators. IEEE Transactions on Antennas and Propagation, 67(4), 2745–2750.

    Google Scholar 

  40. Zhang, Z.-Y., & Wu, K.-L. (2019). Double torsion coil feeding structure for patch antennas. IEEE Transactions on Antennas and Propagation, 67(6), 3688–3694.

    Google Scholar 

  41. Deng, C., Yektakhah, B., & Sarabandi, K. (2019). Series-fed dual-polarized single-layer linear patch array with high polarization purity. IEEE Antennas and Wireless Propagation Letters, 18(9), 1746–1750.

    Google Scholar 

  42. Ciydem, M., & Miran, E. A. (2020). Dual polarization wideband Sub-6 GHz suspended patch antenna for 5G base station. IEEE Antennas and Wireless Propagation Letters. https://doi.org/10.1109/LAWP.2020.2991967

    Article  Google Scholar 

  43. Al-Tarifi, M. A., Sharawi, M. S., & Shamim, A. (2018). Massive MIMO antenna system for 5G base stations with directive ports and switched beam steering capabilities. IET Microwaves, Antennas & Propagation, 12, 1709–1718.

    Google Scholar 

  44. Alieldin, A., Huang, Y., Stanley, M., Joseph, S. D., & Lei, D. J. (2018). A 5G MIMO antenna for broadcast and traffic communication topologies based on pseudo inverse synthesis. IEEE Access, 6, 65935–65944.

    Google Scholar 

  45. Liu, Y., Wang, S. H., Wang, X. D., & Jia, Y. T. (2019). A differentially fed dual-polarized slot antenna with high isolation and low profile for base station application. IEEE Antennas and Wireless Propagation Letters, 18, 303–307.

    Google Scholar 

  46. Li, M., Chen, X., Zhang, A., & Kishk, A. A. (2019). Dual-polarized broadband base station antenna backed with dielectric cavity for 5G communications. IEEE Antennas and Wireless Propagation Letters. https://doi.org/10.1109/LAWP.2019.2937201

    Article  Google Scholar 

  47. Jehangir, S. S., & Sharawi, M. S. (2017). A miniaturized UWB biplanar Yagi-Like MIMO antenna system. IEEE Antennas and Wireless Propagation Letters, 16, 2320–2323.

    Google Scholar 

  48. Ding, K., Gao, C., Qu, D. X., & Yin, Q. (2017). Compact broadband MIMO antenna with parasitic strip. IEEE Antennas and Wireless Propagation Letters, 16, 2349–2353.

    Google Scholar 

  49. Al-Rawi, A., Hussain, A., Yang, J., Franzen, M., Orlenius, C., & Kishk, A. A. (2014). A new compact wideband MIMO antenna-the double-sided tapered self-grounded monopole array. IEEE Transactions on Antennas and Propagation, 62, 3365–3369.

    Google Scholar 

  50. Deng, J., Li, J., Zhao, L., & Guo, L. (2017). A dual-band inverted-1 MIMO antenna with enhanced isolation for WLAN applications. IEEE Antennas and Wireless Propagation Letters, 16, 2270–2273.

    Google Scholar 

  51. Zhai, H., Zhang, J., Zang, Y., Gao, Q., & Liang, C. (2015). An LTE base-station magnetoelectric dipole antenna with anti-interference characteristics and its MIMO system application. IEEE Antennas and Wireless Propagation Letters, 14, 906–909.

    Google Scholar 

  52. Zhang, Y., Deng, J. Y., Li, M. J., Sun, D., & Guo, L. X. (2019). A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 18(4), 747–751.

    Google Scholar 

  53. Deng, J., Li, J., & Guo, L. (2018). Decoupling of a three-port MIMO antenna with different impedances using reactively loaded dummy elements. IEEE Antennas and Wireless Propagation Letters., 17(3), 430–433.

    Google Scholar 

  54. Lee, H., & Lee, B. (2016). Compact broadband dual-polarized antenna for indoor MIMO wireless communication systems. IEEE Transactions on Antennas and Propagation, 64, 766–770.

    MathSciNet  MATH  Google Scholar 

  55. Yang, F., Zhang, X. X., Ye, X., & Rahmat-Samii, Y. (2001). Wide-band E-shaped patch antennas for wireless communications. IEEE Transactions on Antennas and Propagation, 49(7), 1094–1100. https://doi.org/10.1109/8.933489

    Article  Google Scholar 

  56. Huang, H., Liu, Y., & Gong, S. (2017). A broadband dual-polarized base station antenna with anti-interference capability. IEEE Antennas and Wireless Propagation Letters, 16, 613–616. https://doi.org/10.1109/LAWP.2016.2594095

    Article  Google Scholar 

  57. Ang, B.-K., & Chung, B.-K. (2007). A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications. Progress In Electromagnetics Research, PIER, 75, 397–407.

    Google Scholar 

Download references

Acknowledgements

This paper is supported by National Science Foundation of China (Nos. 62071003, 41874174), the fund for key Laboratory of Electromagnetic scattering (No. 61424090107), Natural Science Foundation of Anhui Province (2008085MF186) and the University Synergy Innovation of Program of Anhui Province (No. GXXT-2020-50).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixia Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahseen, H.U., Yang, L. & Catarinucci, L. A triple band dual-polarized multi-slotted antenna array for base station applications. Wireless Netw 28, 1475–1487 (2022). https://doi.org/10.1007/s11276-022-02918-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02918-w

Keywords

Navigation