Skip to main content
Log in

Trajectory optimization for the UAV assisted data collection in wireless sensor networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) have been imperative means for the collection of information in various fields. Integration of WSN with the latest technology like unmanned aerial vehicles (UAVs) can increase the overall performance of the WSN by increasing the sensor coverage or reducing the latency. However, for full coverage of the sensors to avoid data loss, to reduce the time required to deliver the data to sink and to minimize the calculation of the total path length, overall trajectory optimization is required. In order to solve these challenges, in this work, trajectory of the UAV is considered as a hamiltonian path that covers all the cluster heads in the WSN. The proposed scheme is able to calculate path in polynomial time which is otherwise considered to be NP-Hard. Moreover, data of sensor nodes is sent directly to the UAV thereby eliminating the need of any routing protocol. Simulation results show that the coverage of nodes is improved along with minimized data loss in comparison with single-hop and multi-hop routing protocols of WSN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. de Souza, B. J. O., & Endler, M. (2020). Evaluating flight coordination approaches of UAV squads for WSN data collection enhancing the internet range on WSN data collection. Journal of Internet Services and Applications, 11(1), 1–44.

    Article  Google Scholar 

  2. Vijay, U., & Gupta, N. (2013). Clustering in WSN based on minimum spanning tree using divide and conquer approach. International Journal of Computer and Information Engineering, 7(7), 926–930.

    Google Scholar 

  3. Huang, H., Savkin, A. V., Ding, M., & Huang, C. (2019). Mobile robots in wireless sensor networks: A survey on tasks. Computer Networks, 148, 1–19.

    Article  Google Scholar 

  4. Popescu, D., Stoican, F., Stamatescu, G., Chenaru, O., & Ichim, L. (2019). A survey of collaborative UAV-WSN systems for efficient monitoring. Sensors, 19(21), 4690.

    Article  Google Scholar 

  5. Zhang, T., Xu, Y., Loo, J., Yang, D., & Xiao, L. (2019). Joint computation and communication design for UAV-assisted mobile edge computing in IOT. IEEE Transactions on Industrial Informatics, 16(8), 5505–5516.

    Article  Google Scholar 

  6. Xu, Y., Gui, G., Gacanin, H., & Adachi, F. (2021). A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges. IEEE Communications Surveys Tutorials, 23(2), 668–695. https://doi.org/10.1109/COMST.2021.3059896

    Article  Google Scholar 

  7. Zeng, Y., & Zhang, R. (2017). Energy-efficient UAV communication with trajectory optimization. IEEE Transactions on Wireless Communications, 16(6), 3747–3760.

    Article  Google Scholar 

  8. Shi, W., Zhou, H., Li, J., Xu, W., Zhang, N., & Shen, X. (2018). Drone assisted vehicular networks: Architecture, challenges and opportunities. IEEE Network, 32(3), 130–137.

    Article  Google Scholar 

  9. He, D., Chan, S., & Guizani, M. (2017). Drone-assisted public safety networks: The security aspect. IEEE Communications Magazine, 55(8), 218–223.

    Article  Google Scholar 

  10. Grover, K., Kahali, D., Verma, S., & Subramanian, B. (2020). WSN-based system for forest fire detection and mitigation. In B. Subramanian, S. S. Chen, & K. Reddy (Eds.), Emerging technologies for agriculture and environment (pp. 249–260). Springer.

    Chapter  Google Scholar 

  11. Vera-Amaro, R., Rivero-Ángeles, M. E., & Luviano-Juárez, A. (2020). Data collection schemes for animal monitoring using WSNS-assisted by UAVS: WSNS-oriented or UAV-oriented. Sensors, 20(1), 262.

    Article  Google Scholar 

  12. Velez, F. J., Nadziejko, A., Christensen, A. L., Oliveira, S., Rodrigues, T., Costa, V., Duarte, M., Silva, F., & Gomes, J. (2015). Wireless sensor and networking technologies for swarms of aquatic surface drones (Vol. VTC2015-Fall, pp. 1–2). IEEE.

  13. Hefeeda, M., & Bagheri, M. (2009). Forest fire modeling and early detection using wireless sensor networks. Ad-Hoc and Sensor Wireless Networks, 7(3–4), 169–224.

    Google Scholar 

  14. Bahrepour, M., Meratnia, N., & Havinga, P. J. (2008). Automatic fire detection: A survey from wireless sensor network perspective. Pervasive System Group, Univeristy of Twente.

    Google Scholar 

  15. Ngai, E., Zhou, Y., Lyu, M. R., & Liu, J. (2010). A delay-aware reliable event reporting framework for wireless sensor-actuator networks. Ad Hoc Networks, 8(7), 694–707.

    Article  Google Scholar 

  16. Doolin, D. M., & Sitar, N. (2005). Wireless sensors for wildfire monitoring. In Smart structures and materials 2005: Sensors and smart structures technologies for civil, mechanical, and aerospace systems (Vol. 5765, pp. 477–484). International Society for Optics and Photonics.

  17. Anisi, M. H., Abdullah, A. H., Razak, S. A., Ngadi, M., et al. (2012). Overview of data routing approaches for wireless sensor networks. Sensors, 12(4), 3964–3996.

    Article  Google Scholar 

  18. Khan, A. W., Abdullah, A. H., Anisi, M. H., & Bangash, J. I. (2014). A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Sensors, 14(2), 2510–2548.

    Article  Google Scholar 

  19. Martinez-de Dios, J. R., Lferd, K., de San Bernabé, A., Núnez, G., Torres-González, A., & Ollero, A. (2013). Cooperation between UAS and wireless sensor networks for efficient data collection in large environments. Journal of Intelligent & Robotic Systems, 70(1), 491–508.

    Google Scholar 

  20. Wang, J., Cao, J., Ji, S., & Park, J. H. (2017). Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sinks. The Journal of Supercomputing, 73(7), 3277–3290.

    Article  Google Scholar 

  21. Wang, C., Ma, F., Yan, J., De, D., & Das, S. K. (2015). Efficient aerial data collection with UAV in large-scale wireless sensor networks. International Journal of Distributed Sensor Networks, 11(11), 286,080.

    Article  Google Scholar 

  22. Khawaja, W., Guvenc, I., Matolak, D. W., Fiebig, U. C., & Schneckenburger, N. (2019). A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Communications Surveys & Tutorials, 21(3), 2361–2391.

    Article  Google Scholar 

  23. Uragun, B. (2011). Energy efficiency for unmanned aerial vehicles. In 2011 10th international conference on machine learning and applications and workshops (Vol. 2, pp. 316–320). IEEE

  24. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2017). Mobile unmanned aerial vehicles (UAVS) for energy-efficient internet of things communications. IEEE Transactions on Wireless Communications, 16(11), 7574–7589.

    Article  Google Scholar 

  25. Zhang, T., Xu, Y., Loo, J., Yang, D., & Xiao, L. (2020). Joint computation and communication design for UAV-assisted mobile edge computing in IOT. IEEE Transactions on Industrial Informatics, 16(8), 5505–5516. https://doi.org/10.1109/TII.2019.2948406

    Article  Google Scholar 

  26. Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Giordano, L. G., Garcia-Rodriguez, A., & Yuan, J. (2019). Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Communications Surveys & Tutorials, 21(4), 3417–3442.

    Article  Google Scholar 

  27. Garraffa, M., Bekhti, M., Létocart, L., Achir, N., & Boussetta, K. (2018). Drones path planning for WSN data gathering: A column generation heuristic approach (pp. 1–6). IEEE.

  28. Pascarella, D., Venticinque, S., & Aversa, R. (2013). Agent-based design for UAV mission planning. In 2013 eighth international conference on P2P, parallel, grid, cloud and internet computing (pp. 76–83). IEEE.

  29. Thakur, D., Likhachev, M., Keller, J., Kumar, V., Dobrokhodov, V., Jones, K., Wurz, J., & Kaminer, I. (2013). Planning for opportunistic surveillance with multiple robots. In 2013 IEEE/RSJ international conference on intelligent robots and systems (pp. 5750–5757). IEEE.

  30. Ladosz, P., Oh, H., & Chen, W. H. (2018). Trajectory planning for communication relay unmanned aerial vehicles in urban dynamic environments. Journal of Intelligent & Robotic Systems, 89(1), 7–25.

    Article  Google Scholar 

  31. Wu, Q., Sun, P., & Boukerche, A. (2018). An energy-efficient UAV-based data aggregation protocol in wireless sensor networks. In Proceedings of the 8th ACM symposium on design and analysis of intelligent vehicular networks and applications (pp. 34–40).

  32. Fu, Y., Ding, M., Zhou, C., & Hu, H. (2013). Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(6), 1451–1465.

    Article  Google Scholar 

  33. Nikhitha, S., & Panda, M. (2018). Optimal sensor data harvesting using a mobile sink. Procedia Computer Science, 143, 921–930.

    Article  Google Scholar 

  34. Sun, P., & Boukerche, A. (2018). Performance modeling and analysis of a UAV path planning and target detection in a UAV-based wireless sensor network. Computer Networks, 146, 217–231.

    Article  Google Scholar 

  35. Alemayehu, T. S., & Kim, J. H. (2017). Efficient nearest neighbor heuristic tsp algorithms for reducing data acquisition latency of UAV relay WSN. Wireless Personal Communications, 95(3), 3271–3285.

    Article  Google Scholar 

  36. Dong, M., Ota, K., Lin, M., Tang, Z., Du, S., & Zhu, H. (2014). UAV-assisted data gathering in wireless sensor networks. The Journal of Supercomputing, 70(3), 1142–1155.

    Article  Google Scholar 

  37. Xu, Y. H., Sun, Q. Y., & Xiao, Y. T. (2018). An environmentally aware scheme of wireless sensor networks for forest fire monitoring and detection. Future Internet, 10(10), 102.

    Article  Google Scholar 

  38. Molina-Pico, A., Cuesta-Frau, D., Araujo, A., Alejandre, J., & Rozas, A. (2016). Forest monitoring and wildland early fire detection by a hierarchical wireless sensor network. Journal of Sensors, 2016, 1–8.

    Article  Google Scholar 

  39. Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., & Debbah, M. (2019). A tutorial on UAVS for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys & Tutorials, 21(3), 2334–2360.

    Article  Google Scholar 

  40. Rahman, M. N., Hanuranto, M. I. A. T., & Mayasari, S. R. (2017). Trilateration and iterative multilateration algorithm for localization schemes on wireless sensor network. In 2017 international conference on control, electronics, renewable energy and communications (ICCREC) (pp. 88–92). IEEE.

  41. Xu, J., Jin, N., Lou, X., Peng, T., Zhou, Q., & Chen, Y. (2012). Improvement of leach protocol for WSN. In 2012 9th international conference on fuzzy systems and knowledge discovery (pp. 2174–2177). IEEE.

  42. Obaidat, M. S., Anpalagan, A., & Woungang, I. (2013). Handbook of green information and communication systems. Academic Press. https://doi.org/10.1016/C2011-0-04359-4

    Book  Google Scholar 

  43. Xu, Y., Zhang, T., Yang, D., Liu, Y., & Tao, M. (2021). Joint resource and trajectory optimization for security in UAV-assisted MEC systems. IEEE Transactions on Communications, 69(1), 573–588. https://doi.org/10.1109/TCOMM.2020.3025910

    Article  Google Scholar 

  44. Dargie, W., & Poellabauer, C. (2010). Fundamentals of wireless sensor networks: Theory and practice. Wiley.

    Book  Google Scholar 

  45. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. MIT Press.

    MATH  Google Scholar 

  46. Fitriawan, H., Susanto, M., Arifin, A.S., Mausa, D., Trisanto, A. (2017). Zigbee based wireless sensor networks and performance analysis in various environments. In 2017 15th international conference on quality in research (QiR): International symposium on electrical and computer engineering (pp. 272–275). IEEE.

  47. Digi.com. (2018). XBee/XBee-PRO ZB RF modules user guide. https://www.digi.com/resources/documentation/digidocs/pdfs/90000976.pdf. Accessed: May 20, 2021.

  48. ti.com. (2017). LM35 Precision Centigrade Temperature Sensors datasheet. https://www.ti.com/lit/ds/symlink/lm35.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1621695610932&ref_url=https. Accessed: May 20, 2021.

  49. components101.com. (2018). DHT11 Humidity & Temperature Sensor. https://components101.com/asset/sites/default/files/component_datasheet/DHT11-Temperature-Sensor.pdf. Accessed: May 20, 2021.

  50. Xing, G., Wang, T., Xie, Z., & Jia, W. (2008). Rendezvous planning in wireless sensor networks with mobile elements. IEEE Transactions on Mobile Computing, 7(12), 1430–1443.

    Article  Google Scholar 

  51. Mazayev, A., Correia, N., & Schütz, G. (2016). Data gathering in wireless sensor networks using unmanned aerial vehicles. International Journal of Wireless Information Networks, 23(4), 297–309.

    Article  Google Scholar 

  52. Liu, S., Wei, Z., Guo, Z., Yuan, X., & Feng, Z. (2018). Performance analysis of UAVS assisted data collection in wireless sensor network. In 2018 IEEE 87th vehicular technology conference (VTC Spring) (pp. 1–5). IEEE.

  53. Sharma, G., Bala, S., & Verma, A. K. (2013). Extending certificateless authentication for wireless sensor networks: A novel insight. International Journal of Computer Science Issues (IJCSI), 10(6), 167.

    Google Scholar 

  54. Yaacoub, E., Abu-Dayya, A., & Matin, M. (2012). Multihop routing for energy efficiency in wireless sensor networks. In Wireless sensor networks—Technology and protocols (pp. 165–186). InTech Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, K., Gupta, N., Gupta, J. et al. Trajectory optimization for the UAV assisted data collection in wireless sensor networks. Wireless Netw 28, 1785–1796 (2022). https://doi.org/10.1007/s11276-022-02934-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02934-w

Keywords

Navigation