Skip to main content
Log in

Optimal deployment of multistatic radar for belt barrier coverage

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

How to optimally construct belt barrier coverage to blanket the field of interest (FoI) is a critical and essential issue in wireless sensor networks. To solve this issue, an optimization method is proposed in this paper for deploying multistatic radar. The proposed method utilizes multiple unequal-width barriers consisting of different deployment sequences. First, the structure of the sequence consists of different deployment patterns, and it is challenging to determine it directly. We prove the mutual relations among different patterns and propose an optimization principle to simplify the sequence structure. In addition, one barrier coverage is usually inadequate to cover the whole FoI, thus multiple unequal-width barrier coverages are adopted. Then, we model the issue as a linear programming problem. To solve this model, integer linear programming (ILP) and exhaustive methods are jointly exploited to determine the sequence structure on one deployment line by minimizing the deployment cost. Subsequently, the ILP is adopted to explore the number of varied barriers and the corresponding minimum cost. Meanwhile, the optimal deployment parameters, such as the number of deployment lines, receivers, and transmitters, can be determined. Some numerical simulations are conducted to demonstrate that, compared with the existing method, the proposed method requires a lower deployment cost and fewer transmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Tripathi, A., Gupta, H. P., Dutta, T., Mishra, R., Shukla, K. K., & Jit, S. (2018). Coverage and connectivity in WSNs: A survey, research issues and challenges. IEEE Access, 6, 26971–26992. https://doi.org/10.1109/ACCESS.2018.2833632

    Article  Google Scholar 

  2. Liu, X., Yang, B., & Chen, G. (2019). Full-view barrier coverage in mobile camera sensor networks. Wireless Networks, 25(8), 4773–4784. https://doi.org/10.1007/s11276-018-1764-6

    Article  Google Scholar 

  3. Zrelli, A., & Ezzedine, T. (2020). Improvement of K-coverage and connectivity: Case of border monitoring application. In 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA) (pp. 1–5). IEEE. https://doi.org/10.1109/AICCSA50499. 2020.9316539.

  4. Wang, B., Xu, H., Liu, W., & Yang, L. T. (2015). The optimal node placement for long belt coverage in wireless networks. IEEE Transactions on Computers, 64(2), 587–592. https://doi.org/10.1109/TC.2013.215

    Article  MathSciNet  MATH  Google Scholar 

  5. Kumar, S., Lai, T. H., & Arora, A. (2007). Barrier coverage with wireless sensors. Wireless Networks, 13(6), 817–834. https://doi.org/10.1007/s11276-006-9856-0

    Article  Google Scholar 

  6. Fan, H., Li, M., Sun, X., Wan, P. J., & Zhao, Y. (2014). Barrier coverage by sensors with adjustable ranges. ACM Transactions on Sensor Networks (TOSN), 11(1), 14. https://doi.org/10.1145/2629518

    Article  Google Scholar 

  7. Saipulla, A., Westphal, C., Liu, B., & Wang, J. (2013). Barrier coverage with line-based deployed mobile sensors. Ad Hoc Networks, 11(4), 1381–1391. https://doi.org/10.1016/j.adhoc.2010.10.002

    Article  Google Scholar 

  8. Chen, G., Xiong, Y., She, J., Wu, M., & Galkowski, K. (2021). Optimization of the directional sensor networks with rotatable sensors for target-barrier coverage. IEEE Sensors Journal, 21(6), 8276–8288. https://doi.org/10.1109/JSEN.2020.3045138

    Article  Google Scholar 

  9. Chen, J., Wang, B., Liu, W., Yang, L. T., & Deng, X. (2017). Rotating directional sensors to mend barrier gaps in a line-based deployed directional sensor network. IEEE Systems Journal, 11(2), 1027–1038. https://doi.org/10.1109/JSYST.2014.2327793

    Article  Google Scholar 

  10. Skolnik, M. (2008). Radar handbook (3rd ed.). The McGraw-Hill Companies.

    Google Scholar 

  11. Willis, N. J., & Griffiths, H. D. (2007). Advances in bistatic radar. Scitech Publishing Inc.

    Book  Google Scholar 

  12. Zhang, S., Zhou, Y., Zhang, L., Zhang, Q., & Du, L. (2021). Target detection for multistatic radar in the presence of deception lamming. IEEE Sensors Journal, 21(6), 8130–8141. https://doi.org/10.1109/JSEN.2021.3050008

    Article  Google Scholar 

  13. Wang, W. Q., & Shao, H. (2014). Radar-to-radar interference suppression for distributed radar sensor networks. Remote Sensing, 6(1), 740–755. https://doi.org/10.3390/rs6010740

    Article  Google Scholar 

  14. Wu, J., Xu, Y., Zhong, X., Sun, Z., & Yang, J. (2017). A three-dimensional localization method for multistatic sar based on numerical range-doppler algorithm and entropy minimization. Remote Sensing, 9(5), 470. https://doi.org/10.3390/rs9050470

    Article  Google Scholar 

  15. Hamdollahzadeh, M., Amiri, R., & Behnia, F. (2020). Moving target localization in bistatic forward scatter radars: Performance study and efficient estimators. IEEE Transactions on Aerospace and Electronic Systems, 56(2), 1582–1594. https://doi.org/10.1109/TAES.2019.2934007

    Article  Google Scholar 

  16. Chiani, M., Giorgetti, A., & Paolini, E. (2018). Sensor radar for object tracking. Proceedings of the IEEE, 106(6), 1022–1041. https://doi.org/10.1109/JPROC.2018.2819697

    Article  Google Scholar 

  17. Gong, X., Zhang, J., Cochran, D., & Xing, K. (2013). Barrier coverage in bistatic radar sensor networks: Cassini oval sensing and optimal placement. In Proceedings of the Fourteenth ACM International Symposium on Mobile ad Hoc Networking and Computing (pp. 49–58).

  18. Wang, B., Chen, J., Liu, W., & Yang, L. T. (2016). Minimum cost placement of bistatic radar sensors for belt barrier coverage. IEEE Transactions on Computers, 65(2), 577–588. https://doi.org/10.1109/TC.2015.2423679

    Article  MathSciNet  MATH  Google Scholar 

  19. Zameni, M., Rezaei, A., & Farzinvash, L. (2021). Two-phase node deployment for target coverage in rechargeable WSNs using genetic algorithm and integer linear programming. The Journal of Supercomputing, 77(4), 4172–4200. https://doi.org/10.1007/s11227-020-03431

    Article  Google Scholar 

  20. Tang, L., Gong, X., Wu, J., et al. (2013). Target detection in bistatic radar networks: Node placement and repeated security game[J]. IEEE Transactions on Wireless Communications, 12(3), 1279–1289.

    Article  Google Scholar 

  21. Yan, T., Hu, S., Cai, J., et al. (2021). Optimization of transmitter-receiver pairing of spaceborne cluster flight netted radar for area coverage and target detection[J]. Mathematical Problems in Engineering, 2021(1), 1–21.

    MathSciNet  Google Scholar 

  22. P Lei, X Huang, J Wang, X Ma, (2012) Sensor placement of multistatic radar system by using genetic algorithm. In: IEEE International Geoscience and Remote Sensing Symposium (pp. 4782–4785) https://doi.org/10.1109/IGARSS.2012.6352544

  23. Ngatchou, P. N., Fox, W. L. J., & El-Sharkawi, M. A. (2006). Multiobjective multistatic sonar sensor placement. IEEE International Conference on Evolutionary Computation, 2006, 2713–2719. https://doi.org/10.1109/CEC.2006.1688648

    Article  Google Scholar 

  24. O. Erdinc, P. Willett and S. Coraluppi, 2006 Multistatic sensor placement: A Tracking Approach, 2006 9th International Conference on Information Fusion, pp. 1–8, doi: https://doi.org/10.1109/ICIF.2006.301745.

  25. Karatas, M., Craparo, E., & Akman, G. (2018). Bistatic sonobuoy deployment strategies for detecting stationary and mobile underwater targets[J]. Naval Research Logistics, 65(4), 331–346.

    Article  MathSciNet  Google Scholar 

  26. Tharmarasa, R., Kirubarajan, T., & Lang, T. (2009). Joint path planning and sensor subset selection for multistatic sensor networks. IEEE Symposium on Computational Intelligence for Security and Defense Applications, 2009, 1–8. https://doi.org/10.1109/CISDA.2009.5356539

    Article  Google Scholar 

  27. Craparo, E. M., Fügenschuh, A., Hof, C., et al. (2019). Optimizing source and receiver placement in multistatic sonar networks to monitor fixed targets[J]. European Journal of Operational Research, 272(3), 816–31.

    Article  MathSciNet  Google Scholar 

  28. Fan, F., Ji, Q., Wu, G., Wang, M., Ye, X., & Mei, Q. (2018). Dynamic barrier coverage in a wireless sensor network for smart grids. Sensors, 19, 41.

    Article  Google Scholar 

  29. Tao, D., Tang, S., Zhang, H., Mao, X., & Ma, H. (2012). Strong barrier coverage in directional sensor networks. Computer Communications, 35, 895–905.

    Article  Google Scholar 

  30. Tao, D., & Wu, T.-Y. (2015). A survey on barrier coverage problem in directional sensor networks. IEEE Sensors Journal, 15, 876–885.

    Article  Google Scholar 

  31. Xu, X., Zhao, C., Ye, T., & Gu, T. (2019). Minimum cost deployment of bistatic radar sensor for perimeter barrier coverage. Sensors, 19(2), 225. https://doi.org/10.3390/s19020225

    Article  Google Scholar 

  32. Li, H.-P., Feng, D.-Z., Chen, S.-F., & Zhou, Y.-P. (2021). Deployment optimization method of multistatic radar for constructing circular barrier coverage. Sensors, 21(19), 6573. https://doi.org/10.3390/s21196573

    Article  Google Scholar 

  33. H Chang, L Kao, K Chang, C Chen (2016) Fault-tolerance and minimum cost placement of bistatic radar sensors for belt barrier coverage. In: 2016 International Conference on Network and Information Systems for Computers (ICNISC) pp. 1–7, https://doi.org/10.1109/ICNISC.2016.011

  34. Huang, P., Zhu, W., & Guo, L. (2019). Optimizing movement for maximizing lifetime of mobile sensors for covering targets on a line. Sensors, 19, 273.

    Article  Google Scholar 

  35. Si, P., Ma, J., Tao, F., et al. (2020). Energy-efficient barrier coverage with probabilistic sensors in wireless sensor networks[J]. IEEE Sensors Journal, 20(10), 5624–33.

    Article  Google Scholar 

  36. Elfes, A. (2013). Occupancy grids: A stochastic spatial representation for active robot perception[J]. Computer Science, 1.

  37. Karatas, M. (2018). Optimal deployment of heterogeneous sensor networks for a hybrid point and barrier coverage application[J]. Computer Networks, 32, 129–144.

    Article  Google Scholar 

  38. Yakc, E., & Karatas, M. (2021). Solving a multi-objective heterogeneous sensor network location problem with genetic algorithm[J]. Computer Networks, 192, 108041.

    Article  Google Scholar 

  39. Karatas, M. (2020). A multi-objective bi-level location problem for heterogeneous sensor networks with hub-spoke topology[J]. Computer Networks, 181, 107551.

    Article  Google Scholar 

  40. Deng, X., Jiang, Y., Yang, L. T., et al. (2019). Data fusion based coverage optimization in heterogeneous sensor networks: A survey[J]. An international journal on information fusion, 52, 90–105.

    Article  Google Scholar 

  41. Jia, X., Cai, Y., Zhou, Q., & Yu, B. (2018). A multicommodity flow-based detailed router with efficient acceleration techniques[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(1), 217–230. https://doi.org/10.1109/TCAD.2017.2693270

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.61971470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazheng Feng.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Proof of Lemma 1

Let \(f(n) = \sqrt {n(\beta^{2} - n)}\), and it can be seen that \(f(x) = \sqrt {x(\beta^{2} - x)}\) has \(f^{\prime}(x) > 0,\) \(f^{\prime\prime}(x) < 0\) when \(x \in [0,{{\beta^{2} } \mathord{\left/ {\vphantom {{\beta^{2} } 2}} \right. \kern-\nulldelimiterspace} 2}]\). Thus, \(f(n)\) is a single increasing concave function, and \(x_{n + 1} - x_{n} = h\{ f(n + 2) + f(n) - 2f(n + 1)\} < 0\).

The proof is completed.

Proof of Lemma 2

(1) Without loss of generality, let \(n = v - i,m = v + i\). First of all, it is assumed that \(n,m,i\) are even. According to formula (5) and (6), we have

$$\begin{aligned} 2\sigma_{F} (h,v) &= \sum\nolimits_{k = 1}^{v/2} {{\text{8}d}_{k} } + 4x_{\frac{v}{2}} \\ &= \sum\nolimits_{k = 1}^{{\frac{v + i}{2}}} {{\text{4}d}_{k} } - \sum\nolimits_{{k = \frac{v}{2} + 1}}^{{\frac{v + i}{2}}} {{\text{4}d}_{k} } \\&+ \sum\nolimits_{k = 1}^{{\frac{v - i}{2}}} {{\text{4}d}_{k} } + \sum\nolimits_{{k = \frac{v - i}{2} + 1}}^{\frac{v}{2}} {{\text{4}d}_{k} } + 4x_{\frac{v}{2}} \\& = \sigma_{F} (h,m) + \sigma_{F} (h,n) - \sum\nolimits_{{k = \frac{v}{2} + 1}}^{{\frac{v + i}{2}}} {{\text{4}d}_{k} } + \sum\nolimits_{{k = \frac{v - i}{2} + 1}}^{{\frac{v}{2} + 1}} {{\text{4}d}_{k} } - 2x_{{\frac{v + i}{2}}} - 2x_{{\frac{v - i}{2}}} \hfill \\ &= \sigma_{F} (h,m) + \sigma_{F} (h,n) - \sum\nolimits_{{k = \frac{v}{2} + 1}}^{{\frac{v + i}{2}}} {{\text{4}d}_{k} } + \sum\nolimits_{{k = \frac{v - i}{2} + 1}}^{\frac{v}{2}} {{\text{4}d}_{k} } + 4x_{\frac{v}{2}} - 2x_{{\frac{v + i}{2}}} - 2x_{{\frac{v - i}{2}}} \hfill \\ &= \sigma_{F} (h,m) + \sigma_{F} (h,n) + 4\sum\nolimits_{k = 1}^{{\frac{i}{2} - 1}} {(d_{{k + \frac{v - i}{2} + 1}} - d_{{k + \frac{v}{2} + 1}} } ) + 2(x_{{\frac{v - i}{2}}} - x_{{\frac{v + i}{2}}} ) \hfill \\ & = \sigma_{F} (h,m) + \sigma_{F} (h,n) + 4\sum\nolimits_{k = 1}^{{\frac{i}{2} - 1}} {(x_{{k + \frac{v - i}{2}}} - x_{{k + \frac{v}{2}}} } ) + 2(x_{{\frac{v - i}{2}}} - x_{{\frac{v + i}{2}}} ) \hfill \\ \end{aligned}$$

Thus,

$$\sigma_{F} (h,m) + \sigma_{F} (h,n) = 2\sigma_{F} (h,v) - 4\sum\nolimits_{k = 1}^{{\frac{i}{2} - 1}} {(x_{{k + \frac{v - i}{2}}} - x_{{k + \frac{v}{2}}} } ) - 2(x_{{\frac{v - i}{2}}} - x_{{\frac{v + i}{2}}} )$$
(29)

Based on formula (29) and the descending property of the sequence \(\{ x_{n} {\text{\} }}\), it can be seen that \(\sigma_{F} (h,m) + \sigma_{F} (h,n) \le 2\sigma_{F} (h,v)\). Furthermore, if and only if i = 0, i.e., \(n = m\), the equation holds.

Second, it is assumed that \(n,m,i\) are odd. Similarly, we can derive that

$$\sigma_{F} (h,m) + \sigma_{F} (h,n) = 2\sigma_{F} (h,v) - 4\sum\nolimits_{k = 0}^{{\frac{i - 3}{2}}} {\left( {x_{{k + \frac{v - i + 1}{2}}} - x_{{k + \frac{v}{2} + 1}} } \right)} .$$
(30)

Based on formula (30) and the descending property of the sequence \(\{ x_{n} {\text{\} }}\), it can be seen that \(\sigma_{F} (h,m) + \sigma_{F} (h,n) \le 2\sigma_{F} (h,v)\). Furthermore, if and only if i = 1, i.e., \(n = v - 1\),\(m = v + 1\), the equation holds.

(2) Let \(n = v - i,m = v + i\). First of all, it is assumed that \(n,m\) are even and i is odd. According to formula (5) and (6),

$$\begin{gathered} 2\sigma_{F} (h,v) = \sum\nolimits_{k = 1}^{(v + 1)/2} {{\text{8}d}_{k} } = \sum\nolimits_{k = 1}^{{\frac{v + i}{2}}} {{\text{4}d}_{k} } - \sum\nolimits_{{k = \frac{v + 1}{2} + 1}}^{{\frac{v + i}{2}}} {{\text{4}d}_{k} } + \sum\nolimits_{k = 1}^{{\frac{v - i}{2}}} {{\text{4}d}_{k} } + \sum\nolimits_{{k = \frac{v - i}{2} + 1}}^{{\frac{v + 1}{2}}} {{\text{4}d}_{k} } \hfill \\ = \sigma_{F} (h,m) + \sigma_{F} (h,n) - \sum\nolimits_{{k = \frac{v + 1}{2} + 1}}^{{\frac{v + i}{2}}} {{\text{4}d}_{k} } + \sum\nolimits_{{k = \frac{v - i}{2} + 1}}^{{\frac{v + 1}{2}}} {{\text{4}d}_{k} } - 2x_{{\frac{v + i}{2}}} - 2x_{{\frac{v - i}{2}}} \hfill \\ = \sigma_{F} (h,m) + \sigma_{F} (h,n) + 4\sum\nolimits_{k = 0}^{{\frac{i - 3}{2}}} {{\text{(}d}_{{k + \frac{v - i}{2} + 2}} } - {d}_{{k + \frac{v + 1}{2} + 1}} ) + 2(x_{{\frac{v - i}{2}}} - x_{{\frac{v + i}{2}}} ) \hfill \\ = \sigma_{F} (h,m) + \sigma_{F} (h,n) + 4\sum\nolimits_{k = 0}^{{\frac{i - 3}{2}}} {{(}x_{{k + \frac{v - i}{2} + 1}} } - x_{{k + \frac{v + 1}{2}}} ) + 2(x_{{\frac{v - i}{2}}} - x_{{\frac{v + i}{2}}} ) \hfill \\ \end{gathered}$$

Thus,

$$\sigma_{F} (h,m) + \sigma_{F} (h,n) = 2\sigma_{F} (h,v) - 4\sum\nolimits_{k = 0}^{{\frac{i - 3}{2}}} {{(}x_{{k + \frac{v - i}{2} + 1}} } - x_{{k + \frac{v + 1}{2}}} ) - 2(x_{{\frac{v - i}{2}}} - x_{{\frac{v + i}{2}}} )$$
(31)

According to formula (31), it can be seen that \(\sigma_{F} (h,m) + \sigma_{F} (h,n) < 2\sigma_{F} (h,v).\)

Second, it is assumed that \(n,m\) are odd and \(i\) is an even. It can be derived that

$$\begin{aligned} \sigma _{F} (h,m) + \sigma _{F} (h,n) = 2\sigma _{F} (h,v) \\ - 4\sum\nolimits_{{k = 0}}^{{\frac{{i - 2}}{2}}} {\left( {x_{{k + \frac{{v - i + 1}}{2}}} - x_{{k + \frac{{v + 1}}{2}}} } \right)} \\ \end{aligned}$$
(32)

From formula (32), it can be seen that \(\sigma_{F} (h,m) + \sigma_{F} (h,n) \le 2\sigma_{F} (h,v)\). Furthermore, if and only if \(i\) = 0, i.e., \(n = m\), this equation holds.

(3) Without loss of generality, let \(n = v + i\),\(m = v + 1 - i\) and m is odd. Thus, it is assumed that \(v,i\) are odd. Correspondingly, \(n\) is even. Then, according to formula (5) and (6),

$$\begin{gathered} \sigma_{F} (h,v) + \sigma_{F} (h,v + 1) = \sum\nolimits_{k = 1}^{(v + 1)/2} {{\text{8}d}_{k} } + 2x_{{\frac{v + 1}{2}}} = \sum\nolimits_{k = 1}^{{\frac{v + i}{2}}} {{\text{4}d}_{k} } - \sum\nolimits_{{k = \frac{v + 1}{2} + 1}}^{{\frac{v + i}{2}}} {{\text{4}d}_{k} } + \sum\nolimits_{k = 1}^{{\frac{v + 2 - i}{2}}} {{\text{4}d}_{k} } + \hfill \\ \sum\nolimits_{{k = \frac{v + 2 - i}{2} + 1}}^{{\frac{v + 1}{2}}} {{\text{4}d}_{k} } + 2x_{{\frac{v + 1}{2}}} = \sigma_{F} (h,m) + \sigma_{F} (h,n) + 4\sum\nolimits_{k = 0}^{{\frac{i - 3}{2}}} {(x_{{k + \frac{v + 2 - i}{2}}} - x_{{k + \frac{v + 1}{2}}} } ) + 2(x_{{\frac{v + 1}{2}}} - x_{{\frac{v + i}{2}}} ) \hfill \\ \end{gathered}$$

Then,

$$\begin{aligned} \sigma _{F} (h,m) + \sigma _{F} (h,n) & = \sigma _{F} (h,v) + \sigma _{F} (h,v + 1) \\ - 4\sum\nolimits_{{k = 0}}^{{\frac{{i - 3}}{2}}} {\left( {x_{{k + \frac{{v + 2 - i}}{2}}} - x_{{k + \frac{{v + 1}}{2}}} } \right)} \\ - 2(x_{{\frac{{v + 1}}{2}}} - x_{{\frac{{v + i}}{2}}}) \\ \end{aligned}$$
(33)

According to formula (33), it is clear that \(\sigma_{F} (h,m) + \sigma_{F} (h,n) \le \sigma_{F} (h,v) + \sigma_{F} (h,v + 1)\). Furthermore, if and only if \(i\) = 1, i.e., \(n = v + 1,m = v\), the equation holds.

Second, it is assumed that \(v,i\) are even. Similarly, we have

$$\begin{aligned} \sigma_{F} (h,v) + \sigma_{F} (h,v + 1) = \sum\nolimits_{k = 1}^{(v + 2)/2} {{\text{8}d}_{k} } - 2x_{\frac{v}{2}} & = \sum\nolimits_{k = 1}^{{\frac{v + i}{2}}} {{\text{4}d}_{k} } - \sum\nolimits_{{k = \frac{v}{2} + 1}}^{{\frac{v + i}{2}}} {{\text{4}d}_{k} } + \sum\nolimits_{k = 1}^{{\frac{v + 2 - i}{2}}} {{\text{4}d}_{k} } \hfill \\ & \quad\,\,+ \sum\nolimits_{{k = \frac{v + 2 - i}{2} + 1}}^{{\frac{v + 2}{2}}} {{\text{4}d}_{k} } + 2x_{\frac{v}{2}} = \sigma_{F} (h,m) + \sigma_{F} (h,n) \hfill\\ & \quad\,\, + 4\sum\nolimits_{k = 0}^{{\frac{i - 2}{2}}} {(x_{{k + \frac{v + 2 - i}{2}}} - x_{{k + \frac{v}{2}}} } ) + 2(x_{\frac{v}{2}} - x_{{\frac{v + i}{2}}} ) \hfill \\ \end{aligned}$$

Then,

$$\sigma_{F} (h,m) + \sigma_{F} (h,n) = \sigma_{F} (h,v) + \sigma_{F} (h,v + 1) - 4\sum\nolimits_{k = 0}^{{\frac{i - 2}{2}}} {(x_{{k + \frac{v + 2 - i}{2}}} - x_{{k + \frac{v}{2}}} } ) - 2(x_{\frac{v}{2}} - x_{{\frac{v + i}{2}}} )$$
(34)

According to formula (34), it is clear that \(\sigma_{F} (h,m) + \sigma_{F} (h,n) \le \sigma_{F} (h,v) + \sigma_{F} (h,v + 1)\). Furthermore, if and only if \(i = 0\), i.e., \(n = v,m = v + 1\), the equation holds.

The proof is completed.

Proof of Lemma 3

Without loss of generality, let \(m_{1} \le m_{2}\). Then, it needs to prove that the following equation holds if \(m_{1} + m_{2} = 2l.\)

$$\sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} ) = \sigma_{F} (h,m_{1} + m_{2} ) - 2\sum\nolimits_{{k^{\prime} = 0}}^{{\frac{{m_{2} - m_{1} - 2}}{2}}} {(x_{{m_{1} + 1 + k^{\prime}}} } - x_{{l + k^{\prime}}} ) - (x_{{m_{1} }} - x_{{m_{2} }} {) }$$
(35)

Similarly, if \(m_{1} + m_{2} = 2l + 1\), we have

$$\sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} ) = \sigma_{F} (h,m_{1} + m_{2} ) - 2\sum\nolimits_{k = 0}^{{\frac{{m_{2} - m_{1} - 3}}{2}}} {(x_{{m_{1} + 1 + k}} } - x_{l + 1 + k} ) - (x_{{m_{1} }} - x_{{m_{2} }} {)}$$
(36)

Actually, according to formula (5) and (6), it can be seen that

$$\begin{aligned} \sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} ) & = \sum\nolimits_{k = 1}^{{m_{1} }} {2{d}_{k} } + x_{{m_{1} }} + \sum\nolimits_{k = 1}^{{m_{1} }} {2{d}_{k} } + \sum\nolimits_{{k = m_{1} + 1}}^{{m_{2} }} {2{d}_{k} } + x_{{m_{2} }} \hfill \\ & = \sum\nolimits_{k = 1}^{{m_{1} }} {{4}d}_{k} + 4d_{{m_{1} + 1}} + \sum\nolimits_{{k = m_{1} + 2}}^{l} {{\text{4}d}_{k} } - \sum\nolimits_{{k = m_{1} + 2}}^{l} {{\text{2}d}_{k} } + \sum\nolimits_{k - l + 1}^{{m_{2} }} {{\text{2}d}_{k} } + x_{{m_{2} }} - x_{{m_{1} }} \hfill \\ & = \sum\nolimits_{k = 1}^{l} {{\text{4}d}_{k} } + 2x_{l} + \sum\nolimits_{k = l + 1}^{{m_{2} }} {2{\text{}d}_{k} } - \sum\nolimits_{{k = m_{1} + 2}}^{l + 1} {{\text{2}d}_{k} } + x_{{m_{2} }} - x_{{m_{1} }} = \sigma_{F} (h,2l) + \hfill \\ & \quad \sum\nolimits_{k = l + 1}^{m_2} {2{\text{}d}_{k} } - \sum\nolimits_{k = m_1+2}^{l + 1} {{\text{2}d}_{k} } + x_{m_2} - x_{m_1} = \sigma_{F} (h,2l) - (x_{{m_{1} }} - x_{{m_{2} }} ) - \hfill \\ & \quad 2\sum\nolimits_{k = 0}^{{\frac{{m_{2} - m_{1} - 2}}{2}}} {{(}d_{{k + m_{1} + 2}} } - d_{k + l + 1} { )}{\text{.}} \hfill \\ \end{aligned}$$

Thus, \(\begin{aligned} & \sigma _{P} (h,m_{1} ) + \sigma _{P} (h,m_{2} ) = \sigma _{F} (h,m_{1} + m_{2} ) \hfill \\ & - 2\sum\nolimits_{{k^{\prime } = 0}}^{{\left( {m_{2} - m_{1} - 2} \right)/2}} {\left( {x_{{m_{1} + 1 + k^{\prime } }} - x_{{l + k^{\prime } }} } \right)-\left( {x_{{m_{1} }} - x_{{m_{2} }} } \right)} \hfill \\ \end{aligned}\) holds.

Similarly, formula (36) can be proven.

Finally, since \(n + m_{1} + m_{2} = 2v\), for ease of presentation, let \(m = m_{1} + m_{2}\). Without loss of generality, let \(m \ge n\),\(m_{2} \ge m_{1}\). Firstly, there are two cases where \(v\) is even:

  • ① if \(n,m_{1} + m_{2}\) are odd, according to formula (30) and (36), we have

$$\begin{gathered} \sigma_{F} (h,n) + \sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} ) = 2\sigma_{F} (h,v) - 4\sum\nolimits_{k = 0}^{{\frac{m - n - 3}{2}}} {(x_{{k + \frac{n + 1}{2}}} - x_{{k + \frac{v}{2} + 1}} } ) - \hfill \\ 2\sum\nolimits_{k = 0}^{{\frac{{m_{2} - m_{1} - 3}}{2}}} {(x_{{m_{1} + 1 + k}} } - x_{{(m_{1} + m_{2} + 1)/2 + k}} ) - (x_{{m_{1} }} - x_{{m_{2} }} {)} \hfill \\ \end{gathered}$$

Furthermore, we have \(\sigma_{F} (h,n) + \sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} ) < 2\sigma_{F} (h,v)\).

  • ② if \(n,m_{1} + m_{2}\) are even, according to formula (29) and (35), we have

$$\begin{aligned} & \sigma_{F} (h,n) + \sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} ) \hfill\\ &= 2\sigma_{F} (h,v) - 4\sum\nolimits_{k = 1}^{{\frac{m - n}{2} - 1}} {(x_{{k + \frac{n}{2}}} - x_{{k + \frac{v}{2}}} } ) - 2(x_{\frac{n}{2}} - x_{\frac{m}{2}} ) \hfill \\ & - 2\sum\nolimits_{{k^{\prime} = 0}}^{{\frac{{m_{2} - m_{1} - 2}}{2}}} {(x_{{m_{1} + 1 + k^{\prime}}} } - x_{{l + k^{\prime}}} ) - (x_{{m_{1} }} - x_{{m_{2} }} {) } \hfill \\ \end{aligned}$$
(37)

Furthermore, if and only if \(n = m\), \(m_{2} = m_{1}\), the maximum value of \(\sigma_{F} (h,n) + \sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} )\) can be obtained, and it is \(2\sigma_{F} (h,v)\). In this case, we have \(m_{2} = m_{1} = \frac{v}{2}\). Also, it can be written as \(m_{2} = m_{1} = \left\lfloor \frac{n}{2} \right\rfloor .\)

Also, there are two cases where \(v\) is odd:

  • ① It is assumed that both \(n\) and \(m_{1} + m_{2}\) are odd. Let \(n = v - i\),\(m_{1} + m_{2} = v + i\), and it can be seen that \(i\) is even. According to formula (34) and (36), we have

$$\begin{gathered} \sigma_{F} (h,n) + \sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} ) = 2\sigma_{F} (h,v) - 4\sum\nolimits_{k = 0}^{{\frac{i - 2}{2}}} {(x_{{k + \frac{v - i + 1}{2}}} - x_{{k + \frac{v + 1}{2}}} } ) - \hfill \\ 2\sum\nolimits_{k = 0}^{{\frac{{m_{2} - m_{1} - 3}}{2}}} {(x_{{m_{1} + 1 + k}} } - x_{{(m_{1} + m_{2} + 1)/2 + k}} ) - (x_{{m_{1} }} - x_{{m_{2} }} {)}{\text{.}} \hfill \\ \end{gathered}$$
(38)

Furthermore, if and only if \(n = m_{1} + m_{2} = v\),\(m_{1} = m_{2} - 1\), the maximum value of \(\sigma_{F} (h,n) + \sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} )\) can be obtained, and it is \(2\sigma_{F} (h,v) - (x_{{m_{1} }} - x_{{m_{2} }} )\). In this case, \(m_{1} = \frac{v - 1}{2} = \left\lfloor \frac{n}{2} \right\rfloor ,m_{2}= \frac{v + 1}{2} = \left\lfloor {\frac{n + 1}{2}} \right\rfloor .\)

  • ② It is assumed that \(n,m_{1} + m_{2}\) are even and \(n \ne m_{1} + m_{2}\). Besides, let \(n = v - i,\)\(m_{1} + m_{2} = v + i\),\(m_{2} \ge m_{1}\). For ease of presentation, we have \(m = m_{1} + m_{2}\). According to formula (31) and (35), the following expression can be obtained

$$\begin{aligned} & \sigma_{P} (h,m_{1} ) + \sigma_{F} (h,m_{2} ) + \sigma_{F} (h,n) \hfill\\ & = 2\sigma_{F} (h,v) - 4\sum\nolimits_{k = 0}^{{\frac{i - 3}{2}}} {{(}x_{{k + \frac{v - i}{2} + 1}} } + x_{{k + \frac{v + 1}{2}}} ) - \hfill \\ & 2(x_{{\frac{v - i}{2}}} - x_{{\frac{v + i}{2}}} ) - 2\sum\nolimits_{{k^{\prime} = 0}}^{{\frac{{m_{2} - m_{1} - 2}}{2}}} {(x_{{m_{1} + 1 + k^{\prime}}} } - x_{{l + k^{\prime}}} ) - (x_{{m_{1} }} - x_{{m_{2} }} {) } \hfill \\ \end{aligned}$$
(39)

Furthermore, if and only if i = 1 (\(|m_{1} + m_{2} - n| = 2\)) and \(m_{1} = m_{2}\), the maximum value of \(\sigma_{P} (h,m_{1} ) + \sigma_{F} (h,m_{2} ) + \sigma_{F} (h,n)\) can be obtained. Specifically, the maximum value is \(2\sigma_{F} (h,v) - 2(x_{{{{\left( {v - 1} \right)} \mathord{\left/ {\vphantom {{\left( {v - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}}} - x_{{{{\left( {v + 1} \right)} \mathord{\left/ {\vphantom {{\left( {v + 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}}} )\). In addition, it can be seen that \(x_{(v - 1)/2} - x_{(v + 1/2)} < 2(x_{(v - 1)/2} - x_{(v + 1/2)} )\). Thus, \(\sigma_{P} (h,m_{1} ) + \sigma_{F} (h,m_{2} ) + \sigma_{F} (h,n) < 2\sigma_{F} (h,v) - (x_{(v - 1)/2} - x_{(v + 1)/2} )\).

Thus, if v is odd, the maximum value of \(\sigma_{P} (h,m_{1} ) + \sigma_{F} (h,m_{2} ) + \sigma_{F} (h,n)\) can be obtained if and only if \(n = m\),\(m_{1} = m_{2} - 1\); If v is even, the maximum value of \(\sigma_{P} (h,m_{1} ) + \sigma_{F} (h,m_{2} ) + \sigma_{F} (h,n)\) can be obtained if and only if \(n = m\), \(m_{2} = m_{1} .\)

(2) For \(n + m_{1} + m_{2} = 2v + 1\), it is assumed that \(n\) is odd. Thus \(m_{1} + m_{2}\) is even. According to formula (35), we have

$$\begin{aligned} & \sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} ) + \sigma_{F} (h,n) \hfill \\ &= \sigma_{F} (h,n) + \sigma_{F} (h,m_{1} + m_{2} ) \hfill \\ & - 2\sum\nolimits_{{k^{\prime} = 0}}^{{\frac{{m_{2} - m_{1} - 2}}{2}}} {(x_{{m_{1} + 1 + k^{\prime}}} } - x_{{l + k^{\prime}}} ) - (x_{{m_{1} }} - x_{{m_{2} }} {) } \hfill \\ \end{aligned}$$
(40)

According to formula (40) and Lemma 2, if and only if \(|n - m_{1} + m_{2} | = 1\),\(m_{1} = m_{2}\), the maximum value of \(\sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} ) + \sigma_{F} (h,n)\) can be obtained, and it is \(\sigma_{F} (h,v) + \sigma_{F} (h,v + 1)\). In this case, if \(v\) is odd, then \(v\) = \(n\),\(m_{1} + m_{2} = v + 1\),\(m_{1} = m_{2} = \frac{n + 1}{2} = \left\lfloor {\frac{n + 1}{2}} \right\rfloor\). Otherwise, if \(v\) is even, then \(n = v + 1\),\(m_{1} + m_{2} = v\), \(m_{1} = m_{2} = \frac{n}{2} = \left\lfloor \frac{n}{2} \right\rfloor\).

Second, it is assumed that \(n\) is even. Thus, \(m_{1} + m_{2}\) is odd. According to formula (36), we have

$$\begin{gathered} \sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} ) + \sigma_{F} (h,n) = \sigma_{F} (h,m_{1} + m_{2} ) + \hfill \\ \sigma_{F} (h,n) - 2\sum\nolimits_{k = 0}^{{\frac{{m_{2} - m_{1} - 3}}{2}}} {(x_{{m_{1} + 1 + k}} } - x_{l + 1 + k} ) - (x_{{m_{1} }} - x_{{m_{2} }} {)} \hfill \\ \end{gathered}$$
(41)

Since \(m_{1} + m_{2}\) is odd, according to formula (41) and Lemma 2, we have \(\sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} ) + \sigma_{F} (h,n) < \sigma_{F} (h,v) + \sigma_{F} (h,v + 1)\). It indicates the maximum value of \(\sigma_{P} (h,m_{1} ) + \sigma_{P} (h,m_{2} ) + \sigma_{F} (h,n)\) cannot be obtained in this case.

The Proof is completed.

Proof of Lemma 4

According to formula (5) and (6), we have

$$\sigma_{P} (h,n + 1) = \sigma_{P} (h,n) + x_{n + 1} + x_{n}$$
(42)
$$\begin{gathered} \sigma_{F} (h,n + 1) - \sigma_{F} (h,n)) = \left\{ \begin{gathered} 2x_{{\frac{n + 1}{2}}} ,n{\text{ is an odd}} \hfill \\ 2x_{\frac{n}{2}} ,n{\text{ is an even}} \hfill \\ \end{gathered} \right.. \hfill \\ \hfill \\ \end{gathered}$$
(43)

(1) From formula (42) and (43), we have \(\sigma_{F} (h,n + 1) + \sigma_{F} (h,n) = 2\sigma_{F} (h,n + 1) - 2x_{\frac{n}{2}}\) and \(\sigma_{P} (h,m + 1) + \sigma_{P} (h,m) = 2\sigma_{P} (h,m) + x_{m + 1} + x_{m}\). Thus,

$$\begin{gathered} \sigma _{F} (h,n) + \sigma _{F} (h,n + 1) + \sigma _{P} (h,m + 1) + \sigma _{P} (h,m) \hfill \\ = 2\left( {\sigma _{F} (h,n + 1} \right) + \sigma _{P} (h,m)) - \left( {2x_{{n/2}} - x_{{m + 1}} - x_{m} } \right) \hfill \\ \end{gathered}$$
(44)

Besides, we have \(m = \frac{n}{2}\). Furthermore, according to Lemma 1 and formula (44), it can be seen that formula (9) holds.

Similarly, we have

$$\sigma_{F} (h,n) + \sigma_{P} (h,m + 1) + \sigma_{P} (h,m) = \sigma_{F} (h,n + 1) + 2\sigma_{P} (h,m)) - (2x_{n/2} - x_{m + 1} - x_{m} ).$$

Also, it can be seen that formula (10) holds.

(2) Similarly, we have

$$\begin{aligned} & \sigma_{F} (h,n) + \sigma_{F} (h,n + 1) + \sigma_{P} (h,m + 1) + \sigma_{P} (h,m) \hfill \\ & = 2(\sigma_{F} (h,n) + \sigma_{P} (h,m + 1)) - (x_{m + 1} + x_{m} - 2x_{(n + 1)/2} ) \hfill \\ \end{aligned}$$
(45)

According to Lemma 1 and formula (45), it can be seen that formula (11) holds.

The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Feng, D., Liu, C. et al. Optimal deployment of multistatic radar for belt barrier coverage. Wireless Netw 28, 2213–2235 (2022). https://doi.org/10.1007/s11276-022-02939-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02939-5

Keywords

Navigation