Skip to main content

Advertisement

Log in

DDPG-based intelligent rechargeable fog computation offloading for IoT

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In view of the existing computation offloading research on fog computing network scenarios, most scenarios focus on reducing energy consumption and delay and lack the joint consideration of smart device rechargeability. This paper proposes a deep deterministic policy gradient-based intelligent rechargeable fog computation offloading mechanism that is combined with simultaneous wireless information and power transfer technology. Specifically, an optimization problem that minimizes the total energy consumption for completing all tasks in a multiuser scenario is formulated, and the joint optimization of the task offloading ratio, uplink channel bandwidth, power split ratio and computing resource allocation is fully considered. Based on the above nonconvex optimization problem with a continuous action space, a communication, computation and energy harvesting co-aware intelligent computation offloading algorithm is developed. It can achieve the optimal energy consumption and delay, and similar to a double deep Q-network, an inverting gradient updating-based dual actor-critic neural network design can improve the convergence and stability of the training process. Finally, the simulation results validate that the proposed mechanism can converge quickly and can effectively reduce the energy consumption with the lowest task delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao, B., Li, Y., Zhang, L., Zhang, L., Mumtaz, S., Zhou, Z., & Peng, M. (2019). When Internet of Things meets blockchain: Challenges in distributed consensus. IEEE Network, 33(6), 133–139.

    Article  Google Scholar 

  2. Zhao, J., Li, Q., Gong, Y., & Zhang, K. (2019). Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks. IEEE Transactions on Vehicular Technology, 68(8), 7944–7956.

    Article  Google Scholar 

  3. Cao, B., Zhang, L., Li, Y., Feng, D., & Cao, W. (2019). Intelligent offloading in multi-access edge computing: A state-of-the-art review and framework. IEEE Communications Magazine, 57(3), 56–62.

    Article  Google Scholar 

  4. Chen, L., Zhou, P., Gao, L., & Xu, J. (2018). Adaptive fog configuration for the industrial Internet of Things. IEEE Transactions on Industrial Informatics, 14(10), 4656–4664.

    Article  Google Scholar 

  5. Xiang, H., Peng, M., Sun, Y., & Yan, S. (2020). Mode selection and resource allocation in sliced fog radio access networks: A reinforcement learning approach. IEEE Transactions on Vehicular Technology, 69(4), 4271–4284.

    Article  Google Scholar 

  6. Fang, F., Wang, K., Ding, Z., & Leung, V. C. (2021). Energy-efficient resource allocation for NOMA-MEC networks with imperfect CSI. IEEE Transactions on Communications, 69(5), 3436–3449.

    Article  Google Scholar 

  7. Liu, L., Chang, Z., Guo, X., Mao, S., & Ristaniemi, T. (2018). Multiobjective optimization for computation offloading in fog computing. IEEE Internet of Things Journal, 5(1), 283–294.

    Article  Google Scholar 

  8. Zhao, Z., Bu, S., Zhao, T., Yin, Z., Peng, M., Ding, Z., & Quek, T. Q. (2019). On the design of computation offloading in fog radio access networks. IEEE Transactions on Vehicular Technology, 68(7), 7136–7149.

    Article  Google Scholar 

  9. Zhang, L., Cao, B., Li, Y., Peng, M., & Feng, G. (2021). A multi-stage stochastic programming-based offloading policy for fog enabled IoT-eHealth. IEEE Journal on Selected Areas in Communications, 39(2), 411–425.

    Article  Google Scholar 

  10. Liu, Y., Yu, F. R., Li, X., Ji, H., & Leung, V. C. (2018). Distributed resource allocation and computation offloading in fog and cloud networks with non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 67(12), 12137–12151.

    Article  Google Scholar 

  11. Chen, S., You, Z., & Ruan, X. (2020). Privacy and energy co-aware data aggregation computation offloading for fog-assisted IoT networks. IEEE Access, 8, 72424–72434.

    Article  Google Scholar 

  12. Tan, L., Hu, R., & Hanzo, L. (2019). Twin-timescale artificial intelligence aided mobility-aware edge caching and computing in vehicular networks. IEEE Transactions on Vehicular Technology, 68(4), 3086–3099.

    Article  Google Scholar 

  13. Wei, Y., Yu, F. R., Song, M., & Han, Z. (2019). Joint optimization of caching, computing, and radio resources for fog-enabled IoT using natural actor-critic deep reinforcement learning. IEEE Internet of Things Journal, 6(2), 2061–2073.

    Article  Google Scholar 

  14. Volodymyr, M., Koray, K., David, S., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.

    Article  Google Scholar 

  15. Wu, C., Yoshinaga, T., Ji, Y., Murase, T., & Zhang, Y. (2017). A reinforcement learning-based data storage scheme for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 66(7), 6336–6348.

    Article  Google Scholar 

  16. Lei, L., Xu, H., Xiong, X., Zheng, K., Xiang, W., & Wang, X. (2019). Multi-user resource control with deep reinforcement learning in IoT edge computing. IEEE Internet of Things Journal, 6(6), 10119–10133.

    Article  Google Scholar 

  17. Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., & Bennis, M. (2019). Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet of Things Journal, 6(3), 4005–4018.

    Article  Google Scholar 

  18. Huang, L., Bi, S., & Zhang, Y. (2020). Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Transactions on Mobile Computing, 19(11), 2581–2593.

    Article  Google Scholar 

  19. Liu, Y., Yu, H., Xie, S., & Zhang, Y. (2019). Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks. IEEE Transactions on Vehicular Technology, 68(11), 11158–11168.

    Article  Google Scholar 

  20. Chen, S., Chen, J., & Zhao, C. (2021). Deep reinforcement learning based cloud-edge collaborative computation offloading mechanism. Tien Tzu Hsueh Pao, 49(1), 157–166.

    Google Scholar 

  21. Zhou, F., & Hu, R. Q. (2020). Computation efficiency maximization in wireless-powered mobile edge computing networks. IEEE Transactions on Wireless Communications, 19(5), 3170–3184.

    Article  Google Scholar 

  22. Chen, S., Zheng, Y., Wang, K., & Lu, W. (2019). Delay guaranteed energy-efficient computation offloading for industrial IoT in fog computing. In Proceedings of the IEEE international conference on communications (ICC) (pp. 1–6).

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 61971235), China Postdoctoral Science Foundation (Grant No. 2018M630590), Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 2021K501C), 333 High-level Talents Training Project of Jiangsu Province, 1311 Talents Plan of NJUPT, and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX22_1017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siguang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Ge, X., Wang, Q. et al. DDPG-based intelligent rechargeable fog computation offloading for IoT. Wireless Netw 28, 3293–3304 (2022). https://doi.org/10.1007/s11276-022-03054-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03054-1

Keywords

Navigation