Skip to main content

Advertisement

Log in

An energy efficiency optimization jointing resource allocation for delay-aware traffic in fronthaul constrained C-RAN

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The Cloud Radio Access Network (C-RAN) with centralized processing features achieves efficient and unified resource management to meet the quality of service (QoS) requirements, while results in an increment of energy consumption. To reach a tradeoff between energy efficiency and QoS, jointly considering baseband unit (BBU) computing resource, remote radio head (RRH) power, and fronthaul (FH) link capacity optimization for delay-aware traffic is an NP-hard problem. In this paper, we propose a system energy efficiency optimization model jointing multiple resources allocation for C-RAN downlink transmission. The end-to-end delay (De) in the proposed model is formulated by the established user data queue model, which satisfies the strict Lyapunov stability. Then, based on defining an improved Drift-Plus-Penalty function \(F_{DPP}\) to transform the proposed original problem into two sub-problems which are BBU service rate allocation and RRH power control problems. The optimal BBU service rate and RRH transmission power of a single slot are obtained through solving a linear equation and applying a convolution neural network (CNN), respectively. Further, we propose an iterative-based optimization algorithm to achieve the optimal resource allocation for each slot. The simulation results show that the proposed optimization algorithm effectively reaches the balance between energy efficiency and QoS, and achieves better energy efficiency compared with the decomposition allocation method based on heuristic algorithm and BBU scheduling based on first-fit-decreasing (FFD) algorithm with lower computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., & Dittmann, L. (2014). Cloud ran for mobile networks-a technology overview. IEEE Communications surveys & tutorials, 17(1), 405–426.

    Article  Google Scholar 

  2. Xia, W., Quek, T. Q., Zhang, J., Jin, S., & Zhu, H. (2019). Programmable hierarchical c-ran: From task scheduling to resource allocation. IEEE Transactions on Wireless Communications, 18(3), 2003–2016.

    Article  Google Scholar 

  3. Lee, Y., Miyanabe, K., Nishiyama, H., Kato, N., & Yamada, T. (2019). Threshold-based rrh switching scheme considering baseband unit aggregation for power saving in a cloud radio access network. IEEE Systems Journal, 13(3), 2676–2687.

    Article  Google Scholar 

  4. Fang, C.-H., Shen, L.-H., Huang, T.-P., & Feng, K.-T. (2022). Delay-aware admission control and beam allocation for 5g functional split enhanced millimeter wave wireless fronthaul networks. IEEE Transactions on Wireless Communications, 21(4), 2430–2444. https://doi.org/10.1109/TWC.2021.3112299

    Article  Google Scholar 

  5. Younis, A., Tran, T. X., & Pompili, D. (2018). Bandwidth and energy-aware resource allocation for cloud radio access networks. IEEE Transactions on Wireless Communications, 17(10), 6487–6500. https://doi.org/10.1109/TWC.2018.2860008

    Article  Google Scholar 

  6. Zamani, A., Taghizadeh, O., & Schmeink, A. (2021). Energy-efficient joint association and precoding in ultra-dense c-ran. IEEE Transactions on Vehicular Technology, 70(3), 2862–2866.

    Article  Google Scholar 

  7. Fettweis, G., & Zimmermann, E. (2008). ICT energy consumption-trends and challenges. In Proceedings of the 11th international symposium on wireless personal multimedia communications (Vol. 2, No. 4, p. 6). Finland: Lapland.

  8. Kempf, J., & Yegani, P. (2002). Openran: A new architecture for mobile wireless internet radio access networks. IEEE Communications Magazine, 40(5), 118–123.

    Article  Google Scholar 

  9. Niknam, S., Roy, A., Dhillon, H.S., Singh, S., Banerji, R., Reed, J.H., Saxena, N., Yoon, S. (2020). Intelligent o-ran for beyond 5g and 6g wireless networks. arXiv preprint arXiv:2005.08374

  10. Singh, S.K., Singh, R., Kumbhani, B. (2020). The evolution of radio access network towards open-ran: Challenges and opportunities. In 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 1–6. IEEE

  11. Sun, Y., Li, C., Huang, Y., Yang, L. (2016). Energy-efficient resource allocation in c-ran with fronthaul rate constraints. In 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), pp. 1–6. IEEE

  12. Pan, C., Zhu, H., Gomes, N. J., & Wang, J. (2017). Joint precoding and rrh selection for user-centric green mimo c-ran. IEEE Transactions on wireless Communications, 16(5), 2891–2906.

    Article  Google Scholar 

  13. Dai, B., & Yu, W. (2016). Energy efficiency of downlink transmission strategies for cloud radio access networks. IEEE Journal on Selected Areas in Communications, 34(4), 1037–1050.

    Article  Google Scholar 

  14. Tang, J., Tay, W. P., & Quek, T. Q. (2015). Cross-layer resource allocation with elastic service scaling in cloud radio access network. IEEE Transactions on Wireless Communications, 14(9), 5068–5081.

    Article  Google Scholar 

  15. Yu, N., Miao, Y., Mu, L., Du, H., Huang, H., & Jia, X. (2016). Minimizing energy cost by dynamic switching on/off base stations in cellular networks. IEEE Transactions on Wireless Communications, 15(11), 7457–7469.

    Article  Google Scholar 

  16. Li, R., Zhao, Z., Chen, X., Palicot, J., & Zhang, H. (2014). Tact: A transfer actor-critic learning framework for energy saving in cellular radio access networks. IEEE Transactions on Wireless Communications, 13(4), 2000–2011.

    Article  Google Scholar 

  17. Yang, Y., Chen, L., Dong, W., & Wang, W. (2014). Active base station set optimization for minimal energy consumption in green cellular networks. IEEE Transactions on Vehicular Technology, 64(11), 5340–5349.

    Article  Google Scholar 

  18. Cheng, Y., Pesavento, M., & Philipp, A. (2013). Joint network optimization and downlink beamforming for comp transmissions using mixed integer conic programming. IEEE Transactions on Signal Processing, 61(16), 3972–3987.

    Article  MathSciNet  MATH  Google Scholar 

  19. Yan, J., Li, J., Zhao, L., & Chen, R. (2014). Robust joint transmit beamforming with qos guarantees in time-asynchronous das. IEEE Transactions on Vehicular Technology, 64(4), 1506–1518.

    Article  Google Scholar 

  20. Ha, V. N., Le, L. B., et al. (2015). Coordinated multipoint transmission design for cloud-rans with limited fronthaul capacity constraints. IEEE Transactions on Vehicular Technology, 65(9), 7432–7447.

    Article  Google Scholar 

  21. Tao, M., Chen, E., Zhou, H., & Yu, W. (2016). Content-centric sparse multicast beamforming for cache-enabled cloud ran. IEEE Transactions on Wireless Communications, 15(9), 6118–6131.

    Article  Google Scholar 

  22. Luo, S., Zhang, R., & Lim, T. J. (2014). Downlink and uplink energy minimization through user association and beamforming in c-ran. IEEE Transactions on Wireless Communications, 14(1), 494–508.

    Article  Google Scholar 

  23. Park, S.-H., Jeong, S., Na, J., Simeone, O., Shitz, S.S. (2021). Collaborative cloud and edge mobile computing in c-ran systems with minimal end-to-end latency. IEEE Transactions on Signal and Information Processing over Networks

  24. Shen, L.-H., Tsai, C.-L., Wang, C.-Y., & Feng, K.-T. (2022). Hybrid controlled user association and resource management for energy-efficient green rans with limited fronthaul. IEEE Access, 10, 5264–5280. https://doi.org/10.1109/ACCESS.2022.3140814

    Article  Google Scholar 

  25. Al-Zubaedi, W., Al-Raweshidy, H.S. (2017). A parameterized and optimized bbu pool virtualization power model for c-ran architecture. In IEEE EUROCON 2017-17th International Conference on Smart Technologies, pp. 38–43. IEEE

  26. Noor, S., Nordin, R., & Ismail, M. (2020). An improved-water filling algorithm power allocation in network mimo. Telecommunication Systems, 8(9), 113–119.

    Google Scholar 

  27. Yu, N., Song, Z., Du, H., Huang, H., Jia, X. (2017). Multi-resource allocation in cloud radio access networks. In 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE

  28. Zhang, J., Chen, S., Guo, X., Shi, J., & Hanzo, L. (2019). Boosting fronthaul capacity: Global optimization of power sharing for centralized radio access network. IEEE Transactions on Vehicular Technology, 68(2), 1916–1929.

    Article  Google Scholar 

  29. Cai, Y., Yu, F. R., & Bu, S. (2014). Cloud computing meets mobile wireless communications in next generation cellular networks. IEEE Network, 28(6), 54–59.

    Article  Google Scholar 

  30. Liao, Y., Song, L., Li, Y., & Zhang, Y. A. (2016). How much computing capability is enough to run a cloud radio access network? IEEE Communications Letters, 21(1), 104–107.

    Article  Google Scholar 

  31. Akkarajitsakul, K., Hossain, E., Niyato, D., & Kim, D. I. (2011). Game theoretic approaches for multiple access in wireless networks: A survey. IEEE Communications Surveys & Tutorials, 13(3), 372–395.

    Article  Google Scholar 

  32. Wang, S., Sun, Y. (2017). Enhancing performance of heterogeneous cloud radio access networks with efficient user association. In 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE

  33. Han, T., & Ansari, N. (2017). Network utility aware traffic load balancing in backhaul-constrained cache-enabled small cell networks with hybrid power supplies. IEEE Transactions on Mobile Computing, 16(10), 2819–2832.

    Article  Google Scholar 

  34. Sahu, B. J., Dash, S., Saxena, N., & Roy, A. (2017). Energy-efficient bbu allocation for green c-ran. IEEE Communications Letters, 21(7), 1637–1640.

    Article  Google Scholar 

  35. Younis, A., Tran, T. X., & Pompili, D. (2021). Energy-efficient resource allocation in c-rans with capacity-limited fronthaul. IEEE Transactions on Mobile Computing, 20(2), 473–487. https://doi.org/10.1109/TMC.2019.2942597

    Article  Google Scholar 

  36. Luong, P., Gagnon, F., Despins, C., & Tran, L.-N. (2017). Optimal joint remote radio head selection and beamforming design for limited fronthaul c-ran. IEEE Transactions on Signal Processing, 65(21), 5605–5620.

    Article  MathSciNet  MATH  Google Scholar 

  37. Neely, M. J. (2010). Stochastic network optimization with application to communication and queueing systems. Synthesis Lectures on Communication Networks, 3(1), 1–211.

    Article  MATH  Google Scholar 

  38. Auer, G., Giannini, V., Desset, C., Godor, I., Skillermark, P., Olsson, M., Imran, M. A., Sabella, D., Gonzalez, M. J., Blume, O., & Fehske, A. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18(5), 40–49. https://doi.org/10.1109/MWC.2011.6056691

    Article  Google Scholar 

  39. Dinkelbach, W. (1967). On nonlinear fractional programming. Management science, 13(7), 492–498.

    Article  MathSciNet  MATH  Google Scholar 

  40. Shi, Q., Razaviyayn, M., Luo, Z.-Q., & He, C. (2011). An iteratively weighted mmse approach to distributed sum-utility maximization for a mimo interfering broadcast channel. IEEE Transactions on Signal Processing, 59(9), 4331–4340.

    Article  MathSciNet  MATH  Google Scholar 

  41. Khan, S., Muhammad, K., Mumtaz, S., Baik, S. W., & de Albuquerque, V. H. C. (2019). Energy-efficient deep cnn for smoke detection in foggy iot environment. IEEE Internet of Things Journal, 6(6), 9237–9245. https://doi.org/10.1109/JIOT.2019.2896120

    Article  Google Scholar 

  42. Xie, J., Fang, J., Liu, C., & Li, X. (2020). Deep learning-based spectrum sensing in cognitive radio: A cnn-lstm approach. IEEE Communications Letters, 24(10), 2196–2200. https://doi.org/10.1109/LCOMM.2020.3002073

    Article  Google Scholar 

  43. Mai, Z., Chen, Y., & Du, L. (2021). A novel blind mmwave channel estimation algorithm based on ml-elm. IEEE Communications Letters, 25(5), 1549–1553. https://doi.org/10.1109/LCOMM.2021.3049885

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by 2020 Industrial Technology Foundation Public Service Platform Project (No.2020-0105-2-1)

Author information

Authors and Affiliations

Author notes

  1. Yueyun Chen, Yating Xie and Guang Chen have contributed equally to this work.

    Authors

    Corresponding author

    Correspondence to Yueyun Chen.

    Ethics declarations

    Conflict of interest

    Some journals require declarations to be submitted in a standardised format. Please check the Instructions for Authors of the journal to which you are submitting to see if you need to complete this section. If yes, your manuscript must contain the following sections under the heading ‘Declarations’:

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Appendix A Proof of the Throrem 2

    Appendix A Proof of the Throrem 2

    For the update equation of user queue, the two sides of the equation are squared. By applying the inequality

    $$\begin{aligned} \begin{aligned} {\left[ {\max \left( {x + y - z,0} \right) } \right] ^2} \le {x^2} + {y^2} + {z^2} + 2x\left( {y - z} \right) - 2yz,\\\mathrm{{ }}\forall x,y,z \in {\mathcal {R}} \end{aligned} \end{aligned}$$
    (A1)

    we can obtain

    $$\begin{aligned} & \Delta L\left( {{Q_n}\left( t \right) } \right) = \frac{1}{2}E\left[ {\sum \limits _{n = 1}^N {Q_n^2\left( {t + 1} \right) } - \sum \limits _{n = 1}^N {Q_n^2\left( t \right) } } \right] \\ &\quad= \frac{1}{2}E\left[ {\sum \limits _{n = 1}^N {{{\left( {{Q_n}\left( t \right) + {\mu _n}\left( t \right) - {R_n}\left( t \right) } \right) }^2} - \sum \limits _{n = 1}^N {Q_n^2\left( t \right) } } } \right] \\ &\quad= \frac{1}{2}E\left[ {\sum \limits _{n = 1}^N {\left[ {Q_n^2\left( t \right) + \mu _n^2\left( t \right) + R_n^2\left( t \right) } \right] } } \right] \\ &\qquad + \frac{1}{2}E\left[ {\sum \limits _{n = 1}^N {\left[ {2{Q_n}\left( t \right) \left[ {{\mu _n}\left( t \right) - {R_n}\left( t \right) } \right] } \right] } } \right] \\ &\qquad - \frac{1}{2}E\left[ {\sum \limits _{n = 1}^N {\left[ {2{\mu _n}\left( t \right) {R_n}\left( t \right) } \right] } } \right] - \frac{1}{2}E\left[ {\sum \limits _{n = 1}^N {Q_n^2\left( t \right) } } \right] \\ &\quad\le \frac{1}{2}E\left[ {\sum \limits _{n = 1}^N {\left[ {Q_n^2\left( t \right) + \mu _n^2\left( t \right) + R_n^2\left( t \right) } \right] } } \right] \\ &\qquad + \frac{1}{2}E\left[ {\sum \limits _{n = 1}^N {\left[ {2{Q_n}\left( t \right) \left[ {{\mu _n}\left( t \right) - {R_n}\left( t \right) } \right] } \right] } } \right] \\ &\qquad - \frac{1}{2}E\left[ {\sum \limits _{n = 1}^N {Q_n^2\left( t \right) } } \right] \\ &\quad= \frac{1}{2}E\left[ {\sum \limits _{n = 1}^N {\left[ {\mu _n^2\left( t \right) + R_n^2\left( t \right) + 2{Q_n}\left( t \right) \left[ {{\mu _n}\left( t \right) - {R_n}\left( t \right) } \right] } \right] } } \right] \\ &\quad= \frac{1}{2}E\left[ {\sum \limits _{n = 1}^N {\left[ {\mu _n^2\left( t \right) + R_n^2\left( t \right) } \right] } } \right] \\ &\qquad + \sum \limits _{n = 1}^N {E\left[ {{Q_n}\left( t \right) \left[ {{\mu _n}\left( t \right) - {R_n}\left( t \right) } \right] } \right] } \\ &\quad= E\left[ {B_{lya}\left( t \right) } \right] + \sum \limits _{n = 1}^N {E\left[ {{Q_n}\left( t \right) \left[ {{\mu _n}\left( t \right) - {R_n}\left( t \right) } \right] } \right] } \end{aligned}$$
    (A2)

    where \(B_{lya}\left( t \right) = \frac{1}{2}\sum \limits _{n = 1}^N {\left( {\mu _n^2\left( t \right) + R_n^2\left( t \right) } \right) }\).

    Because of the capacity limitation of the fronthaul link \({\mu _n}\left( t \right) \le {R_{n\max }}\) and the maximum data transmission rate of the downlink \({R_n}(t) \le R_{\max }^n\), \(B_{lya}\) satisfies the inequality,

    $$\begin{aligned} E\left[ {B_{lya}\left( t \right) } \right] \le B_{lya} \end{aligned}$$
    (A3)

    where \(B_{lya} = \frac{1}{2}\sum \limits _{n = 1}^N {\left[ {{{\left( {{R_{n\max }}} \right) }^2} + {{\left( {R_{\max }^n} \right) }^2}} \right] }\). By inserting (A2) and (A3) into the \({F_{DPP}}\) (24), Theorem 2 can be proved.

    Rights and permissions

    Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Mai, Z., Chen, Y., Xie, Y. et al. An energy efficiency optimization jointing resource allocation for delay-aware traffic in fronthaul constrained C-RAN. Wireless Netw 29, 353–368 (2023). https://doi.org/10.1007/s11276-022-03118-2

    Download citation

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s11276-022-03118-2

    Keywords

    Navigation