Skip to main content
Log in

UAV flight path design using multi-objective grasshopper with harmony search for cluster head selection in wireless sensor networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Though space travel is technologically developed, bad weather makes path planning inefficient. When an unmanned aerial vehicle looks for an optimal path, it is hard to carry out a mission from unidentified obstacles. In the existing method, the path planner does not work with multiple UAVs. Also path optimization is considered as a big challenge for multiple UAV movement. The proposed work, uses Multiple Swarm Fruit fly optimization with the Q-Learning method for path planning in multiple UAVs. The proposed MSFOA divides the total fruit fly swarms into sub-swarms with multi-job also improves the searching area. In addition, the Q Learning-based path selection strategy is used to optimize global and local searches during the evolutionary process. Whereas the offspring competitive method is used to enhance the level of use of each computation result and to facilitate the transmission of information across different fruit fly sub-swarms. The proposed method MSFO-QL for path planning reduces costs and finds the path more efficiently. Computational results show that the suggested MSFO-QL can handle the limited UAV path planning with minimum worst selection with 280 on case 1 and 232 on case 2. Proposed is more efficient and robust than the existing optimization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shi, K. M., Zhang, X. Y., & Xia, S. (2020). Multiple swarm fruit fly optimization algorithm based path planning method for multi-UAVs. Applied Science, 10, 2822.

    Article  Google Scholar 

  2. Majeed, A., & Hwang, S. O. (2021). A multi-objective coverage path planning algorithm for UAVs to cover spatially distributed regions in urban environments. Aerospace, 8(11), 343.

    Article  Google Scholar 

  3. Yu, X. B., Li, C. L., & Zhou, J. F. (2020). A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios. Knowledge-Based Systems, 204, 106209.

    Article  Google Scholar 

  4. Maw, A. A., Tyan, M., Nguyen, T. A., & Lee, J. W. (2021). iADA*-RL: Anytime graph-based path planning with deep reinforcement learningfor an autonomous UAV. Applied Sciences, 11, 3948.

    Article  Google Scholar 

  5. Yuan, J., Liu, Z., Lian, Y., Chen, L., An, Q., Wang, L., & Ma, B. (2022). Global optimization of UAV area coverage path planning based on good point set and genetic algorithm. Aerospace, 9(2), 86.

    Article  Google Scholar 

  6. Lee, M. T., Chuang, M. L., Kuo, S. T., & Chen, Y. R. (2022). UAV swarm real-time rerouting by edge computing D* lite algorithm. Applied Sciences, 12(3), 1056.

    Article  Google Scholar 

  7. Xia, S., & Zhang, X. (2021). Constrained path planning for unmanned aerial vehicle in 3D terrain using modified multi-objective particle swarm optimization. Actuators, 10(10), 255.

    Article  Google Scholar 

  8. Qin, Z., Zhang, X., Zhang, X., Lu, B., Liu, Z., & Guo, L. (2022). The UAV trajectory optimization for data collection from time-constrained IoT devices: A hierarchical deep q-network approach. Applied Sciences, 12(5), 2546.

    Article  Google Scholar 

  9. Shen, Y., Zhu, Y., Kang, H., Sun, X., Chen, Q., & Wang, D. (2021). UAV path planning based on multi-stage constraint optimization. Drones, 5(4), 144.

    Article  Google Scholar 

  10. Machmudah, A., Shanmugavel, M., Parman, S., Manan, T. S. A., Dutykh, D., Beddu, S., & Rajabi, A. (2022). Flight trajectories optimization of fixed-wing UAV by bank-turn mechanism. Drones, 6(3), 69.

    Article  Google Scholar 

  11. Sun, Y., & Ma, O. (2022). Automating aircraft scanning for inspection or 3D model creation with a UAV and optimal path planning. Drones, 6(4), 87.

    Article  Google Scholar 

  12. Jayaweera, H. M., & Hanoun, S. (2022). Path planning of unmanned aerial vehicles (UAVs) in windy environments. Drones, 6(5), 101.

    Article  Google Scholar 

  13. Gul, F., Mir, I., Abualigah, L., Sumari, P., & Forestiero, A. (2021). A consolidated review of path planning and optimization techniques: Technical perspectives and future directions. Electronics, 10(18), 2250.

    Article  Google Scholar 

  14. Belge, E., Altan, A., & Hacıoğlu, R. (2022). Metaheuristic optimization-based path planning and tracking of quadcopter for payload hold-release mission. Electronics, 11(8), 1208.

    Article  Google Scholar 

  15. Ali, Z. A., Zhangang, H., & Hang, W. B. (2021). Cooperative path planning of multiple UAVs by using max–min ant colony optimization along with cauchy mutant operator. Fluctation Noise Letter, 20, 2150002.

    Article  Google Scholar 

  16. Shao, S., Peng, Y., He, C., & Du, Y. (2020). Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA Transactions, 97, 415–430.

    Article  Google Scholar 

  17. Dewangan, R. K., Shukla, A., & Godfrey, W. W. (2019). Three dimensional path planning using grey wolf optimizer for UAVs. Applied Intelligence, 49, 2201–2217.

    Article  Google Scholar 

  18. Ganguly, S. (2020). Multi-objective distributed generation penetration planning with load model using particle swarm optimization. Decision Making: Applications in Management and Engineering, 3, 30–42.

    Google Scholar 

  19. Kamil, R. T., Mohamed, M. J., & Oleiwi, B. K. (2020). Path planning of mobile robot using improved artificial bee colony algorithm. Engineering and Technology Journal, 38, 1384–1395.

    Article  Google Scholar 

  20. Silva Arantes, J. D., Silva Arantes, M. D., Motta Toledo, C. F., Júnior, O. T., & Williams, B. C. (2017). Heuristic and genetic algorithm approachesfor UAV path planning under critical situation. International Journal on Artificial Intelligence Tools, 26, 1760008.

    Article  Google Scholar 

  21. Hussien, A. G., Amin, M., & AbdElAziz, M. (2020). A comprehensive review of moth-flame optimization: Variants, hybrids, and applications. Journal of Experimental & Theoretical Artificial Intelligence, 32, 705–725.

    Article  Google Scholar 

  22. Qu, C., Gai, W., Zhang, J., & Zhong, M. (2020). A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowledge-Based Systems, 194, 105530.

    Article  Google Scholar 

  23. Soundarya, M., Anusha, D. K., Rohith, P., Panneerselvam, K., & Srinivasan, S. (2019). Optimal path planning of UAV using grey wolf optimizer. International Journal of Computational Systems Engineering, 5, 129–136.

    Article  Google Scholar 

  24. Singh, N. H., & Thongam, K. (2019). Neural network-based approaches for mobile robot navigation in static and moving obstaclesenvironments. Intelligence Service Robotics, 12, 55–67.

    Article  Google Scholar 

  25. Zhang, X. Y., & Duan, H. B. (2015). An improved constrained differential evolution algorithm for unmanned aerial vehicle global routeplanning. Applied Soft Computing, 26, 270–284.

    Article  Google Scholar 

  26. Coelho, L., Ayala, H. V. H., & Alotto, P. (2010). A multiobjective Gaussian particle swarm approach applied to electromagnetic optimization. IEEE Transactions on Magnetics, 46, 3289–3292.

    Article  Google Scholar 

  27. Yuan, X. F., Dai, X. S., Zhao, J. Y., & He, Q. (2014). On a novel multi-swarm fruit fly optimization algorithm and its application. Applied Mathematics and Computation, 233, 260–271.

    Article  MATH  Google Scholar 

  28. Niu, Z., Zhang, B., Dai, B., Zhang, J., Shen, F., Hu, Y., Fan, Y., & Zhang, Y. (2020). 220 GHz multi circuit integrated front end based on solid-state circuits for high speed communication system. Chinese Journal of Electronics, 31(3), 569–580.

    Article  Google Scholar 

  29. Xi, Y., Jiang, W., Wei, K., Hong, T., Cheng, T., & Gong, S. (2022). Wideband RCS reduction of microstrip antenna array using coding metasurface with low Q resonators and fast optimization method. IEEE Antennas and Wireless Propagation Letters, 21(4), 656–660.

    Article  Google Scholar 

  30. Hong, T., Guo, S., Jiang, W., & Gong, S. (2022). Highly selective frequency selective surface with ultrawideband rejection. IEEE Transactions on Antennas and Propagation, 70(5), 3459–3468.

    Article  Google Scholar 

  31. Xu, K., Weng, X., Li, J., Guo, Y., Wu, R., Cui, J., & Chen, Q. (2022). 60-GHz third-order on-chip bandpass filter using GaAs pHEMT technology. Semiconductor Science and Technology, 37(5), 055004.

    Article  Google Scholar 

  32. Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X., Shao, Q., Mangin, S., Fullerton, E., Jiang, L., & Zhao, W. (2020). Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation. Matter, 2(6), 1582–1593.

    Article  Google Scholar 

  33. Wei, G., Fan, X., Xiong, Y., Lv, C., Li, S., & Lin, X. (2022). Highly disordered VO2 films: appearance of electronic glass transition and potential for device-level overheat protection. Applied Physics Express, 15(4), 043002.

    Article  Google Scholar 

  34. Li, A., Masouros, C., Swindlehurst, A. L., & Yu, W. (2021). 1-Bit massive MIMO transmission: Embracing interference with symbol-level precoding. IEEE Communications Magazine, 59(5), 121–127.

    Article  Google Scholar 

  35. Sun, G., Cong, Y., Dong, J., Liu, Y., Ding, Z., Yu, H. (2021). What and How: Generalized Lifelong Spectral Clustering via Dual Memory, IEEE Transactions on Pattern Analysis and Machine Intelligence, P. 1.

  36. Sun, G., Cong, Y., Wang, Q., Zhong, B., & Fu, Y. (2020). Representative Task Self-Selection for Flexible Clustered Lifelong Learning, IEEE Transaction on Neural Networks and Learning Systems, PP. 1-15.

  37. Liu, F., Zhang, G., & Lu, J. (2020). Multi-source heterogeneous unsupervised domain adaptation via fuzzy-relation neural networks, IEEE Transactions on Fuzzy Systems, vol. 1.

  38. Zhang, L., Zheng, H., Cai, G., Zhang, Z., Wang, X., Koh, L. H. (2022). Power-frequency oscillation suppression algorithm for AC microgrid with multiple virtual synchronous generators based on fuzzy inference system, IET Renewable Power Generation.

  39. Zhang, L., Gao, T., Cai, G., & Hai, K. L. (2022). Research on electric vehicle charging safety warning model based on back propagation neural network optimized by improved gray wolf algorithm, Journal of Energy Storage, vol. 49.

  40. Li, D., Ge, S. S., & Lee, T. H. (2021). Simultaneous-arrival-to-origin convergence: Sliding-mode control through the norm-normalized sign function, IEEE Transactions on Automatic Control, vol. 1.

  41. Li, D., Ge, S. S., & Lee, T. H. (2021). Fixed-time-synchronized consensus control of multiagent systems. IEEE Transactions on Control of Network Systems, 8(1), 89–98.

    Article  MATH  Google Scholar 

  42. Zhang, L., Zhang, H., & Cai, G. (2022). The Multi-class Fault Diagnosis of Wind Turbine Bearing Based on Multi-source Signal Fusion and Deep Learning Generative Model. IEEE Transactions on Instrumentation and Measurement, vol. 1.

  43. Mou, J., Duan, P., Gao, L., Liu, X., & Li, J. (2022). An effective hybrid collaborative algorithm for energy-efficient distributed permutation flow-shop inverse scheduling. Future Generation Computer Systems, 128, 521–537.

    Article  Google Scholar 

  44. Li, Z., Chen, L., Nie, L., & Yang, S. X. (2022). A novel learning model of driver fatigue features representation for steering wheel angle. IEEE Transactions on Vehicular Technology, 71(1), 269–281.

    Article  Google Scholar 

  45. Wang, S., Guo, H., Zhang, S., Barton, D., & Brooks, P. (2022). Analysis and prediction of double-carriage train wheel wear based on SIMPACK and neural networks. Advances in Mechanical Engineering, 14(3), 16878132221078492.

    Article  Google Scholar 

  46. Zhao, C., Zhu, Y., Du, Y., Liao, F., & Chan, C. (2022). A novel direct trajectory planning approach based on generative adversarial networks and rapidly-exploring random tree, EEE Transactions on Intelligent Transportation Systems, 1–12.

  47. Liu, K., Ke, F., Huang, X., Yu, R., Lin, F., Wu, Y., & Ng, D. W. K. (2021). DeepBAN: A temporal convolution-based communication framework for dynamic WBANs. IEEE Transactions on Communications, 69(10), 6675–6690.

    Article  Google Scholar 

  48. Zong, C., & Wan, Z. (2022). Container ship cell guide accuracy check technology based on improved 3d Point cloud instance segmentation. Brodogradnja, 73(1), 23–35.

    Article  Google Scholar 

  49. Zong, C., Wang, H., & Wan, Z. (2022). An improved 3D point cloud instance segmentation method for overhead catenary height detection. Computers & Electrical Engineering, 98(1), 107685.

    Article  Google Scholar 

  50. Meng, F., Zheng, Y., Bao, S., Wang, J., & Yang, S. (2022). Formulaic language identification model based on GCN fusing associated information. PeerJ Computer Science, 8, e984.

    Article  Google Scholar 

  51. Xie, Y., Sheng, Y., Qiu, M., & Gui, F. (2022). An adaptive decoding biased random key genetic algorithm for cloud workflow scheduling, Engineering Applications of Artificial Intelligence, 112.

  52. Yan, J., Jiao, H., Pu, W., Shi, C., Dai, J., & Liu, H. (2022). Radar sensor network resource allocation for fused target tracking: A brief review. Information Fusion, 86–87, 104–115.

    Article  Google Scholar 

  53. Dirik, M., Castillo, O., & Kocamaz, A. F. (2019). Visual-serving based global path planning using interval type-2 fuzzy logic control. Axioms, 8, 58.

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored in part by Henan Natural Science Foundation (222102320062). Also, the authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: 22UQU4350057DSR10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peizhen Xing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, P., Zhang, H., Ghoneim, M.E. et al. UAV flight path design using multi-objective grasshopper with harmony search for cluster head selection in wireless sensor networks. Wireless Netw 29, 955–967 (2023). https://doi.org/10.1007/s11276-022-03160-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03160-0

Keywords

Navigation