Skip to main content
Log in

A Real-Time Zero-Crossing Demodulation Concept

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Short range communication systems such as Bluetooth and Digital Enhanced Cordless Telecommunications require low-cost transceiver structures. Hence, the development of appropriate receiver techniques has been a major research topic. Particularly, analog limiter–discriminator with integrate and dump filtering (LDI) techniques have received considerable attention. With the availability of digital signal processing, the digital implementation of LDI techniques has become increasingly attractive. In order to make LDI receivers more accessible, zero-crossing detection was proposed. In this communication, the authors shall focus on a novel, yet promising, approach to digital zero-crossing detection in the intermediate frequency domain. Zero-crossing demodulation is an irregular sampling technique, which replaces the commonly employed regular, i.e. temporally equidistant sampling technique in the mentioned low-cost receivers. In this manuscript, a real-time capable receiver concept deploying zero-crossing demodulation shall be presented. First, the authors shall present the theoretical aspects of zero-crossing demodulation with special focus on both Bluetooth Basic Rate and Bluetooth Enhanced Data Rate. Next, the obtained performance results in terms of the bit error ratio shall be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bluetooth SIG groups: Specification of the Bluetooth system. Version 2.0 + EDR, 4 November 2004.

  2. European Telecommunications Standards Institute: Digital European cordless Telecommunication Common Interface. ETS 300175, 1992. See also: H. Ochsner, “Radio aspects of DECT”, in Proceedings of the 4th Nordic Seminar on Digital Mobile Radio Communications, Oslo, Norway, paper 6.4, 1990.

  3. Anderson J.B., Aulin T., Sundberg C.-E. (1986). Digital Phase Modulation. Plenum, New York

    Google Scholar 

  4. Hong S., Lee Y.-H. (2001). “Fractionally-Spaced Differential Detection of GFSK Signals with Small h”. IEICE Transactions on Communications E84-B:3226–3234

    Google Scholar 

  5. Murota K., Hirade K. (1981). “GMSK Modulation for Digital Mobile Radio Telephony”. IEEE Transactions on Communications 29:1044–1050

    Article  Google Scholar 

  6. M. Mouly and M.-B. Pautet, The GSM System for Mobile Communications ISBN 2–9507190–0-7, Palaiseau,: Mouly et Pautet, 1992.

  7. M.L. Doelz and E.T. Heald, “Minimum-Shift Data Communication system”, U.S. Patent 2,977,417, March 28, 1961.

  8. United States Coast Guard: Broadcast standard for the USCG DGPS Navigation Service. April 1993. Available at http://www.navcen.uscg.mil/dgps.

  9. Park C.-H., You Y.-H., Paik J.-H., Ju M.-C., Cho J.-W. (2001). “Channel Estimation and DC-Offset Compensation Schemes for Frequency-Hopped Bluetooth Networks”. IEEE Communications Letters 5:4–6

    Article  Google Scholar 

  10. Voelcker H.B. (1972). “Zero-Crossing Properties of Angle-Modulated Signal”. IEEE Transactions on Communications 20:307–315

    Article  Google Scholar 

  11. Neubauer A. (2003). Irreguläre Abtastung. Springer, Berlin

    Google Scholar 

  12. Garodnick J., Greco J., Schilling D.L. (1972). “Theory of Operation and Design of an All-Digital FM Discriminator”. IEEE Transactions on Communications 20:1159–1165

    Article  Google Scholar 

  13. Meyerhoff A.A., Mazer W.M. (1961). “Optimum Binary FM Reception using discriminator detection and IF shaping”. RCA Review 22:698–728

    Google Scholar 

  14. Rice S.O. (1963). “Noise in FM receivers”. In: Rosenblatt M. (eds) Time Series Analysis, chapter 25. Wiley, New York, pp 1–1

    Google Scholar 

  15. Papantoni-Kazakos P., Paz I.M. (1975). “The Performance of a Digital FM System with Discriminator: Intersymbol interference Effects”. IEEE Transactions on Communications 23:867–878

    Article  MATH  Google Scholar 

  16. Pawula R.F. (1981). “On the Theory of Error Rates for Narrow-band digital FM”. IEEE Transactions on Communications 29:1634–1643

    Article  MATH  Google Scholar 

  17. Forestieri E., Prati G. (1994). “FM Click Statistics in the Presence of Phase Noise”. IEEE Transactions on Communications 42:549–561

    Article  Google Scholar 

  18. Pawula R.F. (1999). “Improved Performance of Coded Digital FM”. IEEE Transactions on Communications 47:1701–1708

    Article  Google Scholar 

  19. Bennett W.R., Salz J. (1963). “Binary Data Transmission by FM Over a Real Channel”. Bell Systems Technical Journal 42:2387–2426

    Google Scholar 

  20. Mazo J.E., Salz J. (1966). “Theroy of Error Rates for Digital FM”. Bell Systems Technical Journal 45:1511–1535

    Google Scholar 

  21. Tjhung T.T., Wittke P.H. (1970). “Carrier Transmission of Binary Data in a Restricted Band”. IEEE Transactions on Communication Technology 18:295–304

    Article  Google Scholar 

  22. Pawula R.F. (1988). “Refinements to the Theory of Error Rates for Narrow-Band Digital FM”. IEEE Transactions on Communications 36:509–513

    Article  Google Scholar 

  23. Simon M.K., Wang C.C. (1983). “Differential Versus Limiter-Discriminator Detection of Narrow-Band FM”. IEEE Transactions on Communications 31:1227–1234

    Article  Google Scholar 

  24. Forestieri E., Prati G. (1994). “Theoretical Analysis of Coherent Optical FSK Systems With Limiter-Discriminator Detection”. IEEE Transactions on Communications 42:562–573

    Article  Google Scholar 

  25. Andrisano O., Chiani M., Verdone R. (1993). “Performance of Narrowband CPM Systems With Limiter-Discriminator-Integrator Detection and Decision Feedback Equalization in Mobile Radio Channels”. IEEE Transactions on Vehicular Technology 42:166–176

    Article  Google Scholar 

  26. Wickert M.A., Sward W.S. (1999). “Limiter Discriminator-Detected GMSK With FM and GMSK Interference in a Land Mobile Channel”. IEEE Transactions on Communications 47:1693–1700

    Article  Google Scholar 

  27. Cheun K. (1997). “Performance of the Limiter-Discriminator-Integrator Detector in Frequency-Hop Spread-Spectrum Multiple-Access Networks”. IEEE Communications Letters 1:121–123

    Article  Google Scholar 

  28. A.K. Dutta, S. Kiaei and S.A. Talwalker, “Low Power Frequency-to-Time Conversion for Cellular Systems Using Predictive Zero-Crossing”, in Proceedings of the 47th IEEE Vehicular Technology Conference (VTC ’97), Phoenix/AZ, pp. 1074–1078, 1997.

  29. Lee E.K.B. (1995). “Zero-Crossing Zero-IF Demodulator”. IEE Electronics Letters 31:1218–1219

    Article  Google Scholar 

  30. E.K.B. Lee, “Zero-Crossing Baseband Demodulator”, in Proceedings of the IEEE Personal, Indoor and Mobile Radio Conference (PIMRC’95), Toronto/Canada, pp. 466–470, 1995.

  31. Kwon H.M., Lee E.K.B. (1996). “A Novel Digital FM Receiver for Mobile and Personal Communications”. IEEE Transactions on Communications 44:1466–1476

    Article  Google Scholar 

  32. Lee E.K.B., Hou W., Kwon H.M. (1999). “Decision Feedback Postprocessor for Zero-Crossing Digital FM Demodulator”. IEEE Transactions on Vehicular Technology 48:1954–1958

    Article  Google Scholar 

  33. H.M. Kwon, E.K.B. Lee and I.-H. Hyun, “Improved Zero-IF Zero-Crossing Demodulator for Gaussian Minimum Shift Keying Signals in Land Mobile Channels”, in Proceedings of the 46th IEEE Vehicular Technology Conference (VTC ’96), Atlanta/USA, pp. 297–301, 1996.

  34. H. M. Kwon and A. Haghnegahdar, “π/4-DQPSK Signaling With Baseband Zero-Crossing Demodulator”, in Proceedings of the IEEE Global Communications Conference (Globecom’97), Phoenix/AZ, pp. 353–357, 1997.

  35. Scholand T., Jung P. (2003). “Bluetooth Receiver Based on Zero-Crossing Demodulation”. IEE Electronics Letters 39:397–398

    Article  Google Scholar 

  36. Scholand T., Jung P. (2003). “Advanced Intermediate Frequency Zero-Crossing Detection of Bandpass Filtered MSK Signals”. IEE Electronics Letters 39:736–738

    Article  Google Scholar 

  37. T. Scholand and P. Jung, “New Intermediate Frequency Zero-Crossing Detector for MSK Signals”, in Proceedings of the IEEE Globecom 2003, San Francisco/USA, 2003.

  38. T. Scholand and P. Jung, “Novel Receiver Structure for Bluetooth Based on Modified Zero-Crossing Demodulation”, in Proceedings of the IEEE Globecom 2003, San Francisco/USA, 2003.

  39. European Telecommunications Standards Institute: Universal Mobile Telecommunications System (UMTS); Selection Procedures for the Choice of Radio Transmission Technologies of the UMTS. ETSI TR 101 112, Version 3.2.0, April 1998.

  40. Salehand A.M., Valenzuela R.A. (1987). “A Statistical Model for Indoor Multipath Propagation”. IEEE Journal on Selected Areas in Communications 5:128–137

    Article  Google Scholar 

  41. Scholand T., Waadt A., Jung P. (2004). “Max-log-ML Symbol Estimation Postprocessor for Intermediate Frequency LDI Detectors”. IEE Electronics Letters 40:183–185

    Article  Google Scholar 

  42. Proakis J.G. (2001). Digital Communications. McGraw-Hill, Boston, Fourth Edition

    Google Scholar 

  43. Vucetic B., Yuan J. (2000). Turbo Codes: Principles and Applications. Kluwer Academic Publisher, Boston

    MATH  Google Scholar 

  44. W. Koch and A. Baier, “Optimum and Sub-Optimum Detection of Coded Data Disturbed by Time-Varying Intersymbol Interference”, in Proceedings of the IEEE Globecom 1990, San Diego/USA, 1990, pp. 807.5.1–807.5.6.

  45. Lindsey W.C., Simon M.K. (1973). Telecommunication Systems Engineering. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholand, T., Spiegel, C., Waadt, A. et al. A Real-Time Zero-Crossing Demodulation Concept. Wireless Pers Commun 43, 157–183 (2007). https://doi.org/10.1007/s11277-006-9216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-006-9216-5

Keywords

Navigation