Skip to main content
Log in

Determination of Optimum Antenna Number Ratio Based on Differential Evolution for MIMO Systems under Low SNR Conditions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we derive a simple expression to determine the optimum antenna number ratio for multi-input multi-output systems under low signal- to-noise ratio (SNR) conditions. The parameters of the proposed expression are optimally determined by the differential evolution algorithm. The accuracy of the new expression is evaluated at different low SNRs. Numerical results show that the expression introduced in this paper significantly outperforms the high SNR approximation, and the results exhibit very good agreement with the optimum antenna number ratios that maximize the noise-limited asymptotic capacity expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hottinen A., Tirkkonen O., Wichman R. (2003). Multi-antenna transceiver techniques for 3G and beyond. New York, Wiley

    Google Scholar 

  2. Paulraj A., Nabar R., Gore D. (2003). Introduction to space–time wireless communications. Cambridge, Cambridge University Press

    Google Scholar 

  3. Murch R. D., Letaief K. B. (2002). Antenna systems for broadband wireless access. IEEE Communications Magazine 40(4):76–83

    Article  Google Scholar 

  4. Zheng L., Tse D. N. C. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory 49(5):1073–1096

    Article  MATH  Google Scholar 

  5. Paulraj A. J., Gore D. A., Nabar R. U., Bölcskei H. (2004). An overview of MIMO communications-a key to gigabit wireless. Proceedings of the IEEE 92(2):198–218

    Article  Google Scholar 

  6. Gesbert D. et al. (2003). From theory to practice: An overview of MIMO space–time coded wireless systems. IEEE Journal of Selected Areas in Communications 21(3):281–302

    Article  Google Scholar 

  7. Wong K. K., Murch R. D., Letaif K.B. (2002). Performance enhancement of multiuser MIMO wireless communication systems. IEEE Transactions on Communications 50(12):1960–1970

    Article  Google Scholar 

  8. Golden G. D., Foschini G. J., Valenzueh R. A., Wolniansky P. W. (1999). Detection algorithm and initial laboratory results using the V-BLAST space–time communication architecture. Electronics Letters 35(1):14–16

    Article  Google Scholar 

  9. Foschini G. J. (1996). Layered space–time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal 1(2):41–59

    Article  Google Scholar 

  10. Foschini G. J., Gans M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 6(3):311–335

    Article  Google Scholar 

  11. Telatar I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications 10(6):585–595

    Article  Google Scholar 

  12. Goldsmith A., Jafar S. A., Jindal N., Vishwanath S. (2003). Capacity limits of MIMO channels. IEEE Journal of Selected Areas in Communications 21(5):684–702

    Article  Google Scholar 

  13. Winters J. (1987). On the capacity of radio communication systems with diversity in a Rayleigh fading environment. IEEE Journal of Selected Areas in Communications 5(5):871–878

    Article  Google Scholar 

  14. Naguib A.F., Seshadri N., Calderbank A. R. (2000). Increasing data rate over wireless channels. IEEE Signal Processing Magazine 17(3):76–92

    Article  Google Scholar 

  15. Lozano A., Tulino A. M. (2002). Capacity of multiple-transmit multiple-receive antenna architectures. IEEE Transactions on Information Theory 48(12):3117–3128

    Article  MATH  MathSciNet  Google Scholar 

  16. Oyman, O., Nabar, R. U., Bolcskei, H., & Paulraj, A. J. (2002). Tight lower bounds on the ergodic capacity of Rayleigh fading MIMO channels. in Proceedings of GLOBECOM, Taiwan, pp. 1172–1176

  17. Du J. X., Li Y. (2005). Optimization of antenna configuration for MIMO systems. IEEE Transactions on Communications 53(9):1451–1454

    Article  Google Scholar 

  18. Storn R., Price K. V. (1997). Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4):341–359

    Article  MATH  MathSciNet  Google Scholar 

  19. Price K. V., Storn R., Lampinen J. (2005). Differential evolution: A practical approach to global optimization. Berlin, Springer-Verlag

    MATH  Google Scholar 

  20. Verdu S., Shamai S. (1999). Spectral efficiency of CDMA with random spreading. IEEE Transactions on Information Theory 45(2):622–640

    Article  MATH  MathSciNet  Google Scholar 

  21. Rapajic P., Popescu D. (2000). Information capacity of a random signature multiple-input multiple-output channel. IEEE Transactions on Communications 48(8):1245–1248

    Article  MATH  Google Scholar 

  22. Price, K.V. (1999). An introduction to differential evolution. in D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 79–108). London: McGraw-Hill

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Develi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Develi, I. Determination of Optimum Antenna Number Ratio Based on Differential Evolution for MIMO Systems under Low SNR Conditions. Wireless Pers Commun 43, 1667–1673 (2007). https://doi.org/10.1007/s11277-007-9334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-007-9334-8

Keywords

Navigation