Skip to main content
Log in

Closed-loop Grouped Space–Time Block Code: Encoding, Decoding and Codeword Selection

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A design of closed-loop grouped space–time block codes (G-STBCs) including encoding, decoding and codeword selection is proposed for the downlink over Rayleigh flat-fading channels. In particular, at the transmitter, the antenna array is partitioned into a number of groups, each of which is encoded based on the orthogonal STBC (O-STBC). At the receiver, by exploiting the algebraic structure of orthogonal codes, a low-complexity, in recursion form, group-wise ordered successive interference cancellation (OSIC) detector is developed. Moreover, the G-STBC codeword is designed and a G-STBC codeword selection criterion that minimizes the BER performance under the constraints of a fixed spectral efficiency and total transmit power is then proposed. The selection index of the G-STBC codeword and the associated modulation type are determined at the receiver and conveyed to the transmitter with a limited feedback overhead to choose an appropriate mode for transmission. Finally, Numerical examples are used for illustrating the performance of the proposed G-STBCs, OSIC based detection and G-STBC codeword selection criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. 3GPP TR 25.814. (2006). Physical layer aspects for evolved UTRA (Release 7). Release 7, v. 7.0.0.

  2. IEEE 802.16e Std. (2006). IEEE standard for local and metropolitan area networks Part 16: Air interface for fixed and mobile broadband wireless access systems amendment 2: Physical and medium access control layers for combined fixed and mobile operation in licensed bands and corrigendum 1. IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005.

  3. Gesbert D., Shafi M., Shiu D., Smith P.J., Naguib A. (2003). From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE Journal of Select on Areas in Communication 21(3): 281–302

    Article  Google Scholar 

  4. Paulraj A.J., Gore D.A., Nabar R.U., Bölcskei H. (2004). An overview of MIMO communications—A key to gigabit wireless. Proceedings of the IEEE 92(2): 198–218

    Article  Google Scholar 

  5. Diggavi S.N., Al-Dhahir N., Stamoulis A., Calderbank A.R. (2004). An great expectations: The value of spatial diversity in wireless networks. Proceedings of the IEEE 92(2): 219–270

    Article  Google Scholar 

  6. Paulraj A.J., Papadias C.B. (1997). Space-time processing for wireless communications. IEEE Signal Processing Magazine 14(11): 49–83

    Article  Google Scholar 

  7. Paulraj, A. J., Nabar, R., & Gore, D. (2003). Introduction to space-time wireless communications. Cambridge University Press.

  8. Foschini G.J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Laboratories Technical Journal. 1: 45–49

    Article  Google Scholar 

  9. Foschini G.J., Gans M.J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 6(3): 311–335

    Article  Google Scholar 

  10. Golden G.D., Foschini G.J., Valenzuela R.A., Wolniansky P.W. (1999). Detection algorithm and initial laboratory results using V-BLAST space-time communication structure. Electronic Letters 35(1): 14–16

    Article  Google Scholar 

  11. Tarokh V., Seshadri N., Calderbank A.R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory 44(2): 744–765

    Article  MATH  MathSciNet  Google Scholar 

  12. Alamouti S. (1998). A simple transmit diversity scheme for wireless communications. IEEE Journal on Selected Areas in Communications 16(8): 1451–1458

    Article  Google Scholar 

  13. Tarokh V., Jafarkhani H., Calderbank A.R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 45(7): 1456–1467

    Article  MATH  MathSciNet  Google Scholar 

  14. Larsson, E. G., Stoica, P. (2003). Space-time block coding for wireless communications. Cambridge University Press.

  15. Zheng L., Tse D.N.C. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory 49(5): 1073–1096

    Article  MATH  Google Scholar 

  16. Proakis, J. G. (2001). Digital communications, (4th edn.). The McGraw-Hill Companies, Inc.

  17. Gesbert D., Haumonte L., Bolcskei H., Krishnamoorthy R., Paulraj A.J. (2002). Technologies and performance for non-line-of-sight broadband wireless access network. IEEE Communications Magazine 40(4): 86–95

    Article  Google Scholar 

  18. Kim I.M., Tarokh V. (2001). Variable-rate space-time block codes in M-ary PSK systems. IEEE Journal on Selected Areas in Communications 21(3): 362–373

    Article  Google Scholar 

  19. Naguib, A. F., Seshadri, N., & Calderbank, A. R. (1998). Applications of space-time block codes and interference suppression for high capacity and high data rate wireless systems. Proceedings of the IEEE 32th Asilomar Conference on Signals, Systems, and Computers, Vol. 2, pp. 1803–1810, Nov. 1998.

  20. Stamoulis, A., Al-Dhahir, N., & Calderbank, A. R. (2001). Further results on interference cancellation and space-time block codes. Proceedings of the IEEE 35th Asilomar Conference on Signals, Systems, and Computers, Vol. 1, Nov. 2001, pp. 257–261.

  21. Tarokh V., Naguib A., Seshadri N., Calderbank A.R. (1999). Combined array processing and space-time coding. IEEE Transactions an Information Theory 45(4): 1121–1128

    Article  MATH  MathSciNet  Google Scholar 

  22. Tao M., Chen R.S. (2004). Generalized layered space-time codes for high data rate wireless communications. IEEE Transactions on Wireless Communications 3(4): 1067–1075

    Article  MathSciNet  Google Scholar 

  23. Dai Y., Lei Z., Sun S. (2004). Ordered array processing for space-time coded systems. IEEE Communications Letters 8(8): 526–528

    Article  Google Scholar 

  24. Ho, C. L., Wu, J. Y., & Lee, T. S. (2004). Block-based symbol detection for high rate space-time coded systems. Proceedings of the IEEE VTC 2004-Spring, Vol. 1, May 2004, pp. 375–379.

  25. Ho C.L., Wu J.Y., Lee T.S. (2006). Group-wise V-BLAST detection in multiuser space-time dual-signaling wireless systems. IEEE Transactions an Wireless Communications 5(7): 1896–1909

    Article  Google Scholar 

  26. Wu J.Y., Ho C.L., Lee T.S. (2006). Detection of multiuser orthogonal space-time block coded signal via ordered successive interference cancellation. IEEE Transactions an Wireless Communications 5(7): 1594–1600

    Article  Google Scholar 

  27. Catreux S., Gesbert D., Heath R.W. (2002). Adaptive modulation and MIMO coding for broadband wireless data networks. IEEE Communications Magazine 40(6): 108–115

    Article  Google Scholar 

  28. Chung S.T., Goldsmith A.J. (2001). Degree of freedom in adaptive modulation: A unified view. IEEE Transactions an Communications 49(9): 1561–1571

    Article  MATH  Google Scholar 

  29. Tirkkonen, O., Boariu, A., & Hottinen, A. (2002). Minimum ono-orthogonality rate 1 space-time block code for 3+ Tx. IEEE ISSSTA 2002, pp. 429–432.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-Shuo Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, CL., Tseng, FS. & Lee, TS. Closed-loop Grouped Space–Time Block Code: Encoding, Decoding and Codeword Selection. Wireless Pers Commun 44, 423–453 (2008). https://doi.org/10.1007/s11277-007-9366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-007-9366-0

Keywords

Navigation