Skip to main content
Log in

Impact of Mutual Coupling on Adaptive Switching Between MIMO Transmission Strategies and Antenna Configurations

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Adaptive switching between multiple-input multiple-output (MIMO) transmission strategies like diversity and spatial multiplexing is a flexible approach to respond to channel variations. It is desirable to obtain accurate estimates of the switching points between these transmission schemes to realize the capacity gains made possible by adaptive switching. In this paper, it is shown that the accuracy of switching point estimates for switching between statistical beamforming and spatial multiplexing is improved by taking into account the effects of mutual coupling between antenna array elements. The impact of mutual coupling on the ergodic capacities of these two transmission strategies is analyzed, by deriving expressions for the same. Adaptive switching between combinations of transmission strategies and antenna array configurations (using reconfigurable antenna arrays) is shown to produce maximum capacity gains. Expressions for the switching points between transmission strategies and/or antenna configurations, including mutual coupling effects, are derived and used to explore the influence of mutual coupling on the estimates. Finally, measurements taken from reconfigurable rectangular patch antenna arrays are used to validate the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foschini G.J., Gans M.J. (1998) On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communication 6(3): 311–335

    Article  Google Scholar 

  2. Paulraj A.J., Gore D.A., Nabar R.U., Bolcksei H. (2004) An overview to MIMO communications—a key to Gigabit wireless. Proceedings of the IEEE 92(2): 198–218

    Article  Google Scholar 

  3. Goldsmith A., Jafar S.A., Jindal N., Vishwanath S. (2000) Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communication 48(3): 502–513

    Google Scholar 

  4. Jorswieck E.A., Boche H. (2004) Channel capacity and capacity-range of beamforming in MIMO wireless systems under correlated fading with covariance feedback. IEEE Transactions Wireless Communication 3: 1543–1553

    Article  Google Scholar 

  5. Kang, M., & Alouini, M. S. (2003). Water-filling capacity and beamforming performance of MIMO systems with covariance feedback. IEEE Work on Signal Processing Advances in Wireless Communication, 556–560.

  6. Foschini G.J. (1996) Layered space-time architecture for wireless communications in a fading environment when using multiple antennas. Bell Laboratories Technical Journal 1(2): 41–59

    Article  Google Scholar 

  7. Golden G.D., Foschini G.J., Valenzuela R.A., Wolniansky P.W. (1999) Detection algorithm and initial laboratory results using the V-BLAST space-time communications architecture. IEEE Electronic Letters 35(7): 14–15

    Article  Google Scholar 

  8. Paulraj, A. J., & Kailath, T. (1994). Increasing capacity in wireless broadcast systems using distributed transmission/directional reception (DTDR). U. S. Patent 5,345,599, Sep. 1994.

  9. Gesbert D., Shafi M., Shiu D., Smith P.J., Naguib A. (2003) From theory to practice: An overview of MIMO space time coded wireless systems. IEEE Journal on Selected Areas in Communication 21(3): 281–302

    Article  Google Scholar 

  10. Heath R.W. Jr., Paulraj A.J. (2005) Switching between diversity and multiplexing in MIMO systems. IEEE Transactions on Communication 53(6): 962–968

    Article  Google Scholar 

  11. Forenza, A., McKay, M. R., Pandharipande, A., Heath, R. W., Jr., & Collings, I. B. (2005). Adaptive MIMO transmission for exploiting the capacity of spatially correlated channels. IEEE Transactions on Vehicular Technology (Accepted).

  12. Catreux S., Erceg V., Gesbert D., Heath R.W. Jr. (2002) Adaptive modulation and MIMO coding for broadband wireless data networks. IEEE Communication Magazine 40(6): 108–115

    Article  Google Scholar 

  13. Jorswieck E.A., Boche H. (2004) Optimal transmission strategies and impact of correlation in multiantenna systems with different types of channel state information. IEEE Transactions on Signal Processing 52(12): 3440–3453

    Article  MathSciNet  Google Scholar 

  14. Shiu D.S., Foschini G.J., Gans M.J., Kahn J.M. (2000) Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communication 48(3): 502–513

    Article  Google Scholar 

  15. Forenza A., Heath R.W. Jr. (2004) Impact of antenna geometry on MIMO communication in indoor clustered channels. Proceedings of AP-S International Symposium 2: 1700–1703

    Google Scholar 

  16. Piazza D., Dandekar K.R. (2006) Reconfigurable antenna solution for MIMO-OFDM systems. IEE Electronic Letters 42((8): 446–447

    Article  Google Scholar 

  17. Piazza, D., Kirsch, N. J., Forenza, A., Heath, R. W., Jr., & Dandekar, K. R. (2007). Design and evaluation of a reconfigurable antenna array for MIMO systems. IEEE Transactions on Antenna and Propagation (Submitted Aug. 2006, revised Mar. 2007, accepted June).

  18. Cetiner B.A., Jafarkhani H., Qian J.Y., Yoo H.J., Grau A., Flaviis F.D. (2004) Multifunctional reconfigurable MEMS integrated antennas for adaptive MIMO Systems. IEEE Communication Magazine 42: 62–70

    Article  Google Scholar 

  19. Anagnostou D.E., Zheng G., Chryssomallis M.T., Lyke J.C., Ponchak G.E., Papapolymerou J., Christodoulou C.G. (2006) Design, fabrication, and measurements of an RF-MEMS-based self-similar reconfigurable antenna. IEEE Transactions on Antennal and Propagation 54: 422–432

    Article  Google Scholar 

  20. Jung C.W., Lee M.J., Li G.P., Flaviis F.D. (2006) Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Transactions on Antenna and Propagation 54: 455–463

    Article  Google Scholar 

  21. Huff G.H., Bernhard J.T. (2006) Integration of packaged RF-MEMS switches with radiation pattern reconfigurable square spiral microstrip antennas. IEEE Transactions on Antennas and Propagation 54: 464–469

    Article  Google Scholar 

  22. Yang S.L.S., Luk K.M. (2006) Design of a wide-band l-probe patch antenna for pattern reconfiguration or diversity applications. IEEE Transactions on Antennas and Propagation 54: 433–438

    Article  Google Scholar 

  23. Guo Y.X., Chia M.Y.W., Chen Z.N. (2004) Miniature built-in multiband antennas for mobile handsets. IEEE Transactions on Antennas and Propagation 52(8): 1936–1944

    Article  Google Scholar 

  24. Svantesson T., Ranheim A. (2001) Mutual coupling effects on the capacity of multielement antenna systems. Proceedings of IEEE International Conference Acoustics, Speech, and Signal Processing 2: 2485–2488

    Google Scholar 

  25. Li X., Nie Z.P. (2004) Mutual coupling effect on the performance of MIMO wireless channels. IEEE Antennas and Wireless Propagation Letters 3(1): 344–347

    Article  MathSciNet  Google Scholar 

  26. Wallace J.W., Jensen M.A. (2002) The capacity of MIMO wireless systems with mutual coupling. Proceedings of the IEEE Vehicular Technoloygy Conference 2: 696–700

    Google Scholar 

  27. Waldschmidt C., Schulteis S., Wiesbeck W. (2004) Complete RF system model for analysis of compact MIMO arrays. IEEE Transactions on Vehicular Technology 53(3): 579–586

    Article  Google Scholar 

  28. Mbonjo H.N.M., Hansen J., Hansen V. (2004) MIMO Capacity and antenna array design. IEEE Telecommunications Conference Proceedings Globecom 5: 3155–3159

    Google Scholar 

  29. Wallace J.W., Jensen M.A. (2004) Mutual coupling in MIMO wireless systems: A rigorous network theory analysis. IEEE Transactions on Wireless Communication 3(4): 1317–1325

    Article  Google Scholar 

  30. Ohishi T., Oodachi N., Sekine S., Shoki H. (2005) A method to improve the correlation coefficient and the mutual coupling for diversity antenna. International Symposium on Antennas and Propagation Soceity 1A: 507–510

    Google Scholar 

  31. Huang Z., Balanis C.A., Birtcher C.R. (2006) Mutual coupling compensation in UCAs: Simulations and experiment. IEEE Transactions on Antennas and Propagation 54(11): 3082–3085

    Article  Google Scholar 

  32. Yuan Q., Chen Q., Sawaya K. (2006) Performance of adaptive array antenna with arbitrary geometry in the presence of mutual coupling. IEEE Transactions on Antennas and Propagation 54(7): 1991–1996

    Article  Google Scholar 

  33. Bhagavatula, R., Forenza, A., & Heath, R. W., Jr. (2006). Impact of antenna array configurations on adaptive switching in MIMO channels. Proceedings of International Symposium on Wireless Personal Multiple Communication.

  34. Erceg, V., et al. (2001). IEEE 802.16 broadband wireless access working Group. IEEE 802.16.3c-01/29r4, http://ieee802.org/16, Jul. 2001.

  35. Kermoal J.P., Schumacher L., Pedersen K.I., Mogensen P.E., Frederiksen F. (2002) A stochastic MIMO radio channel model with experimental validation. IEEE Journal on Selected Areas in Communication 20(6): 1211–1226

    Article  Google Scholar 

  36. Ozcelik H., Herdin M., Weichselberger W., Wallace J., Bonek E. (2003) Deficiencies of Kronecker MIMO radio channel model. IEEE Electronic Letters 39(16): 1209–1210

    Article  Google Scholar 

  37. Weichselberger, W., Ozcelik, H., Herdin, M., & Bonek, E. (2003). A novel stochastic MIMO channel model and its physical interpretation. International Symposium on Wireless Personal Multiple Communication.

  38. Wyne, S., Molisch, A. F., Almers, P., Eriksson, G., Karedal, J., & Tufvesson, F. (2005). Statistical evaluation of outdoor-to-indoor office MIMO measurements at 5.2 GHz. Proceedings of IEEE Vehicular Technology Conference, pp. 146–150.

  39. Oestges, C., Ozcelik, H., & Bonek, E. (2005). On the practical use of analytical MIMO channel models. Proceedings of IEEE Antennas and Propagation Symposium, pp. 406–409.

  40. Forenza A., Heath R.W. Jr. (2006) Benefit of pattern diversity via 2-element array of circular patch antennas in indoor clustered MIMO channels. IEEE Transactions on Communication 54((5): 943–954

    Article  Google Scholar 

  41. Li K., Ingram M., Van Nguyen A. (2002) Impact of clustering in statistical indoor propagation models on link capacity. IEEE Transactions on Communication 50(4): 521–523

    Article  Google Scholar 

  42. Saleh A.M., Valenzuela R.A. (1987) A statistical model for indoor multipath propagation. IEEE Journal Selected Areas in Communication SAC- 5(2): 128–137

    Article  Google Scholar 

  43. Wallace J.W., Jensen M.A. (2001) Statistical characteristics of measured MIMO wireless channel data and comparison to conventional models. Proceedings of IEEE Vehicular Technology Conference 2(7–11): 1078–1082

    Google Scholar 

  44. Erceg, V. et.al. (2004). TGn channel models. IEEE 802.11-03/940r4, http://www.802wirelessworld.com:8802/.

  45. 3GPP Technical Specification Group. Spatial channel model, SCM-134 text V6.0. Spatial Channel Model AHG (Combined as-hoc from 3GPP and 3GPP2).

  46. Davidson, D. B., Theron, I. P., Jakobus, U., & Landstorfer, F. M. (1998). Recent progress on the antenna simulation program FEKO. Proceedings of COMSIG Conference, pp. 427–430.

  47. Morris M.L., Jensen M.A. (2005) Network Model for MIMO systems with coupled antennas and noisy amplifiers. IEEE Transactions on Antennas and Propagation 53(1): 545–552

    Article  Google Scholar 

  48. Gore D., Heath R.W. Jr., Paulraj A. (2002) Transmit selection on spatial multiplexing systems. IEEE Communication Letters 6: 491–493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Heath Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhagavatula, R., Heath, R.W., Forenza, A. et al. Impact of Mutual Coupling on Adaptive Switching Between MIMO Transmission Strategies and Antenna Configurations. Wireless Pers Commun 52, 69–87 (2010). https://doi.org/10.1007/s11277-008-9513-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-008-9513-2

Keywords

Navigation