Skip to main content
Log in

Convolutional Multiplexing for Multicarrier Transmission: System Performance and Code Design

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The paper presents a new multiplexing scheme, called convolutional multiplexing (CM), to achieve high diversity gain and high spectrum efficiency for OFDM-based systems. In this scheme, data symbols are spread onto several subcarriers by the convolutional spreader. Spectrum efficiency can be improved by two approaches: high order modulation and multi-code multiplexing. With the best spreading codes searched out, the multi-code multiplexing OFDM-CM system performs better in AWGN channel, but may lose diversity gain in frequency selective fading channels. On the other hand, the single-code spreading OFDM-CM system with high order modulation can achieve the maximum diversity order. Simulation results show that the multi-code convolutional multiplexing perform better than code-division multiplexing (CDM) for OFDM-based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 3GPP TS 36.212. (2007). Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 8).

  2. Anderson J. and Mohan S. (1984). Sequential coding algorithms: A survey and cost analysis. IEEE Transactions on Communications 32(2): 169–176

    Article  Google Scholar 

  3. Bingham J.A.C. (1990). Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine 28(5): 5–14

    Article  MathSciNet  Google Scholar 

  4. Chouly, A., Brajal, A., & Jourdan, S. (1993). Orthogonal multicarrier techniques applied to direct sequence spread spectrum CDMA systems. In IEEE Global Telecommunications Conference (GLOBECOM’93), Houston, USA (Vol. 3, pp. 1723–1728).

  5. Divsalar D. and Simon M.K. (1988). The design of trellis coded MPSK for fading channels: Performance criteria. IEEE Transactions on Communications 36(9): 1004–1012

    Article  Google Scholar 

  6. ETSI ETS 300 401. (1995). Radio broadcasting systems; digital audio broadcasting (DAB) to mobile, portable and fixed receivers.

  7. ETSI ETS 300 744. (1997). Digital video broadcasting (DVB); frame structure, channel coding and modulation for digital terrestrial television (DVB-T).

  8. Eyuboglu M.V. and Qureshi S.U.H. (1988). Reduced-state sequence estimation with set partitioning and decision feedback. IEEE Transactions on Communications 36(1): 13–20

    Article  Google Scholar 

  9. Fazel, K., & Papke, L. (1993). On the performance of convolutionally coded CDMA-OFDM for mobile communication system. In IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’93), Yokohama, Japan (pp. 468–472).

  10. Forney G.D. Jr. (1972). Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Transactions on Information Theory 18(3): 363–378

    Article  MATH  MathSciNet  Google Scholar 

  11. Forney G.D. Jr. (1973). The Viterbi algorithm. Proceedings of the IEEE 61(3): 268–278

    Article  MathSciNet  Google Scholar 

  12. Hanzo L., Mnster M., Choi B. and Keller T. (2003). OFDM and MC-CDMA for broadband multi-user communications, WLANs and broadcasting. Wiley-IEEE Press, New York

    Google Scholar 

  13. ITU-R M.1225. (1998). Guidelines for evaluation of radio transmission technologies for IMT-2000.

  14. Kaiser S. (2002). OFDM code-division multiplexing in fading channels. IEEE Transactions on Communications 50(8): 1266–1273

    Article  Google Scholar 

  15. Le Floch B., Alard M. and Berrou C. (1995). Coded orthogonal frequency division multiplex. Proceedings of the IEEE 83(6): 982–996

    Article  Google Scholar 

  16. Proakis J.G. (2001). Digital communications (4th ed). McGraw Hill, New York

    Google Scholar 

  17. Sundberg C.-E.W. and Seshadri N. (1993). Coded modulation for fading channels: An overview. European Transactionns on Telecommunications 4(3): 309–323

    Article  Google Scholar 

  18. Ungerboeck G. (1974). Adaptive maximum-likelihood receiver for carrier-modulated data-transmission systems. IEEE Transactions on Communications 22(5): 624–636

    Article  Google Scholar 

  19. van Nee R., Awater G., Morikura M., Takanashi H., Webster M. and Halford K.W. (1999). New high-rate wireless LAN standards. IEEE Communications Magazine 37(12): 82–88

    Article  Google Scholar 

  20. Weinstein S. and Ebert P. (1971). Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communications 19(5): 628–634

    Article  Google Scholar 

  21. Yee, N., Linnartz, J. P., & Fettweis, G. (1993). Multi-carrier CDMA in indoor wireless radio networks. In IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’93), Yokohama, Japan (pp. 109–113).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Li, D. Convolutional Multiplexing for Multicarrier Transmission: System Performance and Code Design. Wireless Pers Commun 49, 545–560 (2009). https://doi.org/10.1007/s11277-008-9576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-008-9576-0

Keywords

Navigation