Wireless Pers Commun (2010) 53:111-131
DOI 10.1007/s11277-009-9673-8

Performance Analysis of Spillover-Partitioning Call
Admission Control in Mobile Wireless Networks

Okan Yilmaz - Ing-Ray Chen - Gregory Kulczycki -
William B. Frakes

Published online: 6 March 2009
© Springer Science+Business Media, LLC. 2009

Abstract We propose and analyze spillover-partitioning call admission control (CAC) for
servicing multiple service classes in mobile wireless networks for revenue optimization with
quality of service (QoS) guarantees. We evaluate the performance of spillover-partitioning
CAC in terms of execution time and optimal revenue obtainable by comparing it with existing
CAC algorithms, including partitioning, threshold, and partitioning-threshold hybrid admis-
sion control algorithms. We also investigate fast spillover-partitioning CAC that applies a
greedy heuristic search method to find a near optimal solution fast to effectively trade off
solution quality for solution efficiency. The solution found by spillover-partitioning CAC is
evaluated by an analytical model developed in the paper. We demonstrate through test cases
that spillover-partitioning CAC outperforms existing CAC algorithms for revenue optimiza-
tion with QoS guarantees in both solution quality and solution efficiency for serving multiple
QoS service classes in wireless networks.

Keywords Call admission control - Quality of service - Performance analysis -
Revenue optimization - Mobile networks
1 Introduction

Next generation mobile wireless networks will carry real-time multimedia services such as
video and audio and non-real-time services such as images and files. An important goal is

0. Yilmaz (<) - I.-R. Chen - G. Kulczycki - W. B. Frakes
Computer Science Department, Virginia Tech, Falls Church, VA, USA
e-mail: oyilmaz@vt.edu

I.-R. Chen
e-mail: irchen@vt.edu

G. Kulczycki
e-mail: gregwk @vt.edu

W. B. Frakes
e-mail: wfrakes@vt.edu

@ Springer

112 O. Yilmaz et al.

to adapt to user needs and growing population without compromising the Quality of Service
(QoS) requirements.

Two important QoS metrics in cellular networks are the blocking probability of new calls
and the dropping probability of handoff calls due to unavailability of wireless channels.
Mobile users in a cellular network establish a connection through their local base stations.
A base station may support only a limited number of connections (channels assigned) simul-
taneously due to limited bandwidth. A handoff occurs when a mobile user with an ongoing
connection leaves the current cell and enters another cell. An ongoing connection may be
dropped during a handoff if there is insufficient bandwidth in the new cell to support it. We can
reduce the handoff call drop probability by rejecting new connection requests. Reducing the
handoff call drop probability could result in an increase in the new call blocking probability.
As a result, there is a tradeoff between handoff and new call blocking probabilities.

Call admission control (CAC) for single-class network traffic, such as voice has been
studied extensively in the literature [1-16,23]. The Guard channel algorithm [1] assigns a
higher priority to handoff calls so that more channels are reserved for handoff requests. Hong
and Rappaport [2] proposed a cutoff threshold algorithm with no distinction made initially
between new and handoff calls which are treated equally on a FCFS basis for channel alloca-
tion until a predetermined channel threshold is reached. When the threshold is reached, new
calls are blocked (cutoff), allowing only handoff calls. They subsequently [3] proposed a pri-
ority oriented algorithm where queuing of handoff calls is allowed. Guerin [4] demonstrated
that queuing of both new and handoff calls improves channel utilization while reducing call
blocking probabilities. Yang and Ephremides [5] proved that FCFS based sharing [6] can
generate optimal solutions for some systems. Most of the above mentioned research methods
focus on voice-based cellular systems.

Fang [7] presented a thinning algorithm which supports multiple types of services by
calculating the call admission probability based on the priority and the current traffic sit-
uation. When the network approaches congestion, call admissions are throttled based on
the priority levels of calls, i.e., lower priority calls are blocked, and hence thinned to allow
higher priority calls. Wang et al. [8] classified traffic as real-time and non-real-time traf-
fic and divided the channels in each cell into three parts, namely, new and handoff real-time
calls, new and handoff non-real-time calls, and real-time and non-real-time handoff calls. For
overflow of real-time and non-real-time service handoff requests from the first two groups
of channels, real-time handoff service requests are given a higher priority than non-real-time
service requests. Lai et al. [9] compared complete sharing CAC [6], in which all channels are
shared with no restriction, with partition call admission control and determined that complete
sharing can generate higher bandwidth utilization.

Grand and Horlait [10] proposed a mobile IP reservation protocol which guarantees end-
to-end QoS for mobile terminals. In their CAC scheme they blocked new flows when a
threshold value is reached. Nasser and Hassanein [11] proposed a threshold-based CAC
scheme. While allocating a common threshold value for all new calls, separate thresholds for
different types of handoff calls are allocated based on the bandwidth requirement order. The
bandwidth reserved for existing calls is reduced or expanded depending on the availability of
bandwidth resources. Ogbonmwan et al. [12] investigated the use of three threshold values
for a system with two service classes. Three separate thresholds are used to reserve channels
for voice handoff calls, new voice calls, and handoff data calls. These threshold values are
periodically re-evaluated based on workload conditions. Similarly, Jeong et al. [13] proposed
a handoff scheme for multimedia wireless traffic. Their CAC scheme reserves a guard band
for handoff calls in order to minimize the delay which occurs after a handoff. Zhang and Liu
[14] and Huang et al. [23] proposed adaptive guard channel based CAC schemes to control

@ Springer

Performance Analysis of Spillover-Partitioning Call Admission Control 113

channels allocated for handoff calls based on the ratio of dropped handoff calls. Cheng and
Lin [15] proposed a hierarchical wireless architecture over IPv6-based networks. They used
a coordinated CAC scheme which adjusts guard channels based on current workload con-
ditions. Chen et al. [16] used a threshold-based CAC scheme to offer differentiated QoS to
mobile customers. They introduced priority levels in service classes, which let users decide
the priority of their traffic in case of congestion. These above-cited studies are based on
threshold-based admission control and the goal is to satisfy the handoff call dropping proba-
bility requirement, while maximizing resource usage. Our work in this paper is to satisty QoS
requirements in terms of both handoff and new call dropping probabilities while maximizing
system revenue for multiple service classes.

There have been CAC studies that partition system resources and allocate distinct parti-
tioned resources to serve distinct service classes [17-25]. Haung and Ho [17] presented a
distributed CAC algorithm that runs in each cell and partitions channel resources in the cell
into three partitions: one for real-time calls, one for non-real-time calls, and one for both real-
time and non-real-time calls to share. To be able to satisfy more stringent QoS requirements
of handoff calls, they also applied a threshold value to new calls. To estimate call arrival
rates in each cell in the heterogeneous network, they used an iterative algorithm. Choi and
Bahk [18] compared partitioning-based CAC with complete sharing CAC [6] in the context
of power resources rather than channel resources in QoS-sensitive CDMA networks. They
concluded that partitioning CAC exhibits comparable performance with sharing CAC.

Li et al. [19] proposed a hybrid cutoff priority algorithm for multimedia services. Differ-
ent cutoff thresholds were assigned to individual services. Handoff calls were given a higher
threshold while new calls, controlled by a lower threshold, are served only if there are still
channels available bounded by the lower threshold. Each service class is characterized by its
QoS requirements in terms of channels required. Ye et al. [20] proposed a bandwidth reser-
vation and reconfiguration mechanism to facilitate handoff processes for multiple services.

All these CAC algorithms cited above make acceptance decisions for new and handoff
calls to satisfy QoS requirements in order to keep the dropping probability of handoff calls
and/or the blocking probability of new calls lower than pre-specified thresholds. Also all
these algorithms concern QoS requirements, without considering revenue issues of service
classes. Chen etal. [21] first proposed the concept of maximizing the “payoff” of the system
by admission control in the context of multimedia services. Chen et al. [24] later consid-
ered a class of threshold-based CAC algorithms for maximizing the “reward” earned by
the system with QoS guarantees. They have also utilized threshold-based CAC algorithms
designed for reward optimization to derive optimal pricing, leveraging a demand-pricing
relation that governs demand changes as pricing changes [25]. In this paper, we propose a
new partitioning-based CAC algorithm, namely spillover-partitioning CAC, with the goal to
maximize system revenue with QoS guarantees. We compare this algorithm with existing
CAC algorithms. Our results show that spillover-partitioning CAC generates higher revenue
(for solution quality) in a shorter time (for solution efficiency). We also introduce a fast spill-
over CAC algorithm which tradeoffs solution quality for solution efficiency. We show that
the approximate solution obtained is close to the optimal solution but the solution efficiency
is greatly improved.

The rest of the paper is organized as follows. Section 2 states the system model and gives
assumptions used in characterizing the operational environment of a mobile wireless net-
work. Section 3 describes the spillover-partitioning call admission control algorithm based
on partitioning and complete sharing for revenue optimization with QoS guarantees in mobile
wireless networks. Section4 analyzes performance characteristics of spillover-partitioning
algorithms and compares their performance against existing CAC algorithms in terms of

@ Springer

114 O. Yilmaz et al.

maximum revenue generated with QoS guarantees and time spent for finding a solution.
Finally, Sect.5 summarizes the paper, and outlines future research areas.

2 System Model

A cellular network consists of a number of cells, each of which has a base station to provide
network services to mobile hosts within the cell. We assume there are a number of distinct
service classes characterized by the service priority. For example, a high-priority multimedia
service class versus a low-priority voice service class. For ease of exposition, we assume
that there are two service classes. We will refer to the high-priority service class as class 1,
and the low-priority service class as class 2 in the paper. Further, there are handoff and new
calls for each service class with handoff calls being more important than new calls. Each
service class, other than requiring a number of channels for the intrinsic bandwidth QoS
requirement, imposes a system-wide QoS requirement. For example, the handoff call drop
probability of class 1 being less than 5% could be a QoS requirement. Dropped handoff calls
dissatisfy users more than blocked new calls do. Each service class i has a QoS constraint
on the handoff blocking probability Bti1 and the new call blocking probability Bt;. There
is no queueing. If no channel is available at the time of admission, a call will be dropped
or blocked. This no queueing design is most applicable to real-time service classes where
queueing does not make sense.

From the perspective of a single cell, each service class is characterized by its call arrival
rate (calls per unit time), including new calls initiated by mobile users in the cell and for
handoff calls from neighbor cells, and its departure rate (calls completed per unit time). Let
k; denote the arrival rate of new calls of service class i and HL be the corresponding departure
rate. Similarly, let)\}1 denote the arrival rate of handoff calls of service class i, and ;LL be the
corresponding departure rate. These parameters can be determined by inspecting statistics
collected by the base station in the cell and by consulting with base stations of neighbor cells
[24].

Without loss of generality we assume that a cell has C channels where C can vary depend-
ing on the amount of bandwidth available in the cell. When a call of service class i enters
a service area from a neighboring cell, a handoff call request is generated. Each call has
its specific QoS channel demand dictated by its service class attribute. The term “channel
demand” refers to the number of channels required by a service call. Let £’ denote the number
of channels required by a service call of class i. An example is that a class 1 multimedia call
would require four wireless channels as its channel demand and hence k' = 4. A class 2
voice call would require just one wireless channel and hence k% = 1.

The total revenue obtained by the system is inherently related to the pricing algorithm
employed by the service provider. While many pricing algorithms exist [22], the most preva-
lent with general public acceptance to date is the “charge-by-time” scheme by which a user
is charged by the amount of time in service. Let v’ be the price for a call of service class
i per unit time. That is, if a call of service class i is admitted into a cell, and subsequently
handed off to the next cell or terminated in the cell, a reward of v! multiplied by the amount
of time the service is rendered in the cell will be “earned” by the system. There is no dis-
tinction for handoff versus new calls in pricing as long as the call is in the same service
class. The performance model developed in the paper will allow the service provider to
calculate the revenue earned per unit time under an admission control algorithm by each
individual cell such that the revenue obtained by the system is maximized while satisfying
QoS constraints.

@ Springer

Performance Analysis of Spillover-Partitioning Call Admission Control 115

Here, we note that the class priority of a service class is inherently associated with the
service class and is not related to traffic demand. A high-priority class call has a high reward
rate associated to it and typically requires more channels for service (such as a multimedia
call). It could be that a low-priority class has a high traffic demand and thus the system will
reserve more channels to the class to satisfy the QoS requirement and to maximize the reward
rate obtainable. However, the priority or importance of a class remains the same and will not
be changed with increasing traffic demands.

The total revenue Rt generated by each cell per unit time is the sum of the revenue
generated from each service class:

Rr =R} + R} + R} 4+ R? (1)

Here, RL represents revenue earned from servicing class i handoff calls per unit time, and
R}, represents revenue earned from servicing class i new calls per unit time.

The QoS constraints are expressed in terms of blocking probability thresholds, Btkll, Btllw
Btﬁ, and Btﬁ, for class 1 handoff, class 1 new, class 2 handoff, and class 2 new calls, respec-
tively. Suppose that the handoff dropping probability and new call blocking probability of
class i generated by a CAC algorithm are Bfl and Bfl. Then the imposed QoS constraints are
satisfied when:

B < Bt}; B} <Bt); B < Bt}; B2 < BtZ. 2)

The optimization problem that, we are solving is to maximize Rz in Eq.1 subject to the
constraints specified in Eq.2.

3 Spillover-Partitioning Call Admission Control

For ease of disposition, we assume that two service classes exist with class 1 being the high-
priority class. The algorithm can be easily extended to the case in which more classes exist.
Let c_min; /h denote the minimum number of channels needed to satisfy the new/handoff

QoS constraints for class i alone. We first sort all service calls by C_minil /n to determine the

service order. For example if the order is c_minll1 > c_min! > c_minf1

n > > c_minﬁ, then our
service order would be class 1 handoff calls, class 1 new calls, class 2 handoff calls, and
class 2 new calls. We then divide channels into partitions to serve calls in this service order.
The number of partitions doubles the number of service classes in order to service both new
and handoff calls. When two classes exist, there are four partitions Py, P>, P3, and P4. The
first partition is reserved for class 1 handoff calls only; the second partition is reserved for
class 1 calls including both handoff and new calls; the third partition is reserved for class 1
calls and class 2 handoff calls; and the last partition is open to all call types.

The algorithm is “spillover” in the sense that if a service call cannot be admitted into P;
then it will overflow to P; 1 and so on, as long as P; is a partition that can accept it.

Figure 1 illustrates these four partitions allocated by the spillover-partitioning CAC algo-
rithm. When a call is received, the partition with the lowest index which can accept this call
is used. If this partition does not have enough channels to accommodate the call, then the
next partition is used. As an example, when a high priority (class 1) handoff call is received,
P; is used unless this partition is full. If this partition is full then P; is used and so on. Similar
rules will apply for other service calls. For example, if a high priority new call comes, P,
would be used unless this partition is full. Spillover-partitioning, by the virtue of allocating
several partitions to high-priority classes, can satisfy stringent constraints of high-priority

@ Springer

116 O. Yilmaz et al.

e e 2

Channels for only high-priority handoff calls

7y
(9}
v

Channels shared by high-priority calls
Channels shared by high-priority calls and low priority handoff calls

Channels shared by all calls

]

Fig. 1 Spillover-partitioning admission control

calls. It improves utilization by sharing certain partitions among different service calls. (e.g.,
P4 is shared by all service calls). Due to the use of partitioning, it also greatly reduces com-
putational complexity. Finally, by letting multiple service calls share most of the partitions, it
produces optimal solutions. To satisfy the imposed QoS constraints, the spillover-partitioning
algorithm looks for “feasible” channel allocation solutions in the form of (Cy, Cz, C3, Cy)
generated such that B}, B1 B2, and Bﬁ satisfy the QoS constraints specified by Condition
(2). Here, C; represents the number of channels allocated to P;.

We model P; as an M/M/n/n queue. Calls that cannot be accommodated in P; will be
spilled into Prand so on. Since P is modeled as M/M/n/n queue, the high priority handoff
arrival rate into P», denoted by A }l p, 18 simply the spillover rate from the M/M/n/n queue in

Pl,i.e.,
1
n
L ()]
T T
nPl! 13
j
x5 ()

C; . .
where n' P = L - J denotes the maximum number of class i calls that can be accommodated

3

1
My = M

in Pj. Here we note that the arrival process of high priority handoff calls due to overflow
traffic from Py to P is also assumed to be Poisson as an approximation to obtain close-form
solutions. We also model P> as an M/M/n/n queue shared by high priority calls only. The
spillover rates from P, to P3 thus are given by:

1
2 "y
1 hP2
T +
1p2~ /»Lh ”’n

A N\’
1+ZJ 1]'(“)2_'_)””)

nl
1)‘hPQ i\
1 anZ! Mh oA .U'n
)‘nP = }" i
3 2l Y J
14+ ZhPy + Lo
Z =1 J' T

where k;l P, and Ail p; are, respectively, class i handoff and new call spillover rates to P;.

“

1 a1
)”hP3 -)"/’ng

(&)

As P3 contains more service class types with distinct channel demands, there is no sim-
ple analytical solution available based on queueing models as we have done for Py to P;

@ Springer

Performance Analysis of Spillover-Partitioning Call Admission Control 117

E'ves @ S"wes
E' nP3 @ s’ nP3
E%ps @ S’hes

Fig. 2 SPN model for the third partition

and it requires the use of a more sophisticated performance model for P3. We develop a
mathematic model based on Stochastic Petri Net (SPN) [26] as shown in Fig.2 to model
P3 and derive the spillover rates from P3 to P4. The reason we use SPN for performance
assessment is that SPN provides a concise representation of the underlying Markov model
which potentially may contain tens of thousands of states. A SPN model also allows general
time distributions rather than just exponential distributions to be associated with event times
if necessary. We use places (circles) to hold calls being admitted and serviced by the system,
and transitions (vertical bars) to model event arrivals. A transition is enabled when its input
place (if exists) is non-empty and its associated enabling predicate (if exists) is evaluated
true. A transition rate is associated with a transition to specify how often the event associated
with the transition occurs. Since P3 can only accommodate class 1 handoff and new calls
and class 2 handoff calls, in Fig.2 we use places UC}llm, UCII1P3 and UCﬁP3 to hold class 1
handoff calls, class 1 new calls, and class 2 handoff calls, respectively. We use M(UC]11P3),
M(UC}lP3), and M(UCﬁP3) to represent the number of calls they hold. Transition Elllp3 models
arrivals of class 1 handoff calls at rate A ;11 Ix E111P3 models arrivals of class 1 new call arrivals
at rate)“,11 Py Eﬁm models class 2 handoff call arrivals at rate A?: S}I1P3 models departures of

class 1 handoff calls with a service rate of M(UC}llm) multiplied by per-call service rate “111?
Sl]ﬂ,3 models departures of class 1 new calls with a service rate of M(UCAP3) multiplied by
per-call service rate u,]l; Sﬁm models departures of class 2 handoff calls with a service rate
of M(UCﬁm) multiplied by per-call service rate ,uﬁ.

A new service request arrival is admitted in P3 only if the partition has enough chan-
nels to accommodate the new request. Therefore, we assign enabling predicates to guard
E111P3, Ellﬂ,3 and Eﬁpy with C3 being the constraint. Specifically, the enabling predicate of
Elpy and ElL; is [M(UCL,) + M(UC)p5) k! + k! + M(UCZ,,)k? < C3. The enabling pred-
icate of E2p; is [M(UCL,;) + M(UC|p5)1k! + k? + M(UCZp;)k? < C3. Handoff calls and
new calls in class 1 and handoff calls in class 2 rejected by P3 will be spilled into P4 with
rates A}l X)\}, Py and)L% Py respectively, given by:

Myp, = Myp, — rate(Ejp,) (6)
Ayp, = dpp, —rate(E,p.) (7
Mop, = Mip, —rate(Epp) ®)

Here, rate(Eic) is calculated by the expected value of a random variable X defined as
X = Aic if ElC is enabled; O otherwise. To obtain rate(EiC) the SPN model is first converted
into a Markov model from which the steady state probability distribution is solved analyti-
cally. Then rate(EiC) is computed as the probability-weighted average of X.

@ Springer

118 O. Yilmaz et al.

c
o—m
E]

1 1
E'hps S'hpa

c
O_A
E

1
E nP4

1
S nP4

c
ON
]

2
E 2
hPa S hPa

2
E nP4

c
ON
]

2
S nP4

(

Fig. 3 SPN model for the fourth partition

Similarly, we develop an SPN model shown in Fig. 3 to model P4 as well as to compute
Bih and BL of class i in P4. The SPN model for P4 is very similar to the SPN model for P3
except that this model includes one more SPN subnet for modeling class 2 new calls. It can
be shown that the blocking/dropping probabilities B!, Bkll, B2, and Bﬁ can be calculated by:

n

()‘}zm - rate(E}lP4))

Bl = : ©
)\hP4
1 1
| ()an4 — rate(E,1P4))
B, = i (10)
)‘nP4
(A2 —rate(E2))
h Py hPy
B} = : (11)
)\'hP4
L (B raree2,))
B, = 2 (12)
n

The revenue earned per unit time, Rlll, Rlll, Rﬁ, and Rﬁ in Eq. 1, can be calculated from the
four performance models developed for Py, P>, P3, and P4. Specifically, since class 2 new
calls can only be in the 4th partition, Rﬁ is calculated as:

R2 = (1—B2) A2 v? (13)

Class 2 handoff calls can only be in the last two partitions. Hence Rﬁ is calculated by summing
the revenue earned from the last two partitions as follows:

Ri =rate(Ejp,) -v* + (1= B}) Ajp, - v* (14)
Class 1 new calls can be in the last three partitions. Hence, Rll1 is calculated as:
Ry =y —Ayp) v +rate(Eyp) -v' + (1= By) Ayp, - v' (15)

Finally, class 1 handoff calls can be in any of the four partitions. Hence Rt11 is calculated by
the revenue earned in all four partitions as follows:

Rjy = (= Ayp) 0" + (M, — Mpy) - 0! +rate(Epp) -v' + (1= By) Ajp, - v
(16)

@ Springer

Performance Analysis of Spillover-Partitioning Call Admission Control 119

Table 1 Pure spillover-partitioning CAC

Optimal_t search() {

// Determine the minimum number of channels needed by each service call

ciminlr = get_min(C, k', Al p].) * k!
cimin],‘ = get_min(C, kY, Al u]ﬁ) * k!
c min®, = get _min(C, k?, A%, p%) * k°
c_min?, = get_min(C, k?, A%, p%) * k?

for (C,;=0, BLH=0; C;<=C; C;=C;+k') {
for (C,=0, BIN=0; C,;<=C; C,=C,+k') {
for (C3=0, B2H=0; C;<=C; C3=C;+k?) {

Cs = C — (CiHCytCy)

// check if at least min number of channels are reserved for each
// service call
if ((c_min';<=C)&& (c_min' <= (C,#+C3+Cs)) && (c_min%<=Cs+C,) && (c_min?,<=Cy))) {

optimal= check_optimality(C;,C;,Cs,Cy)
}

B2N = B2N || (B, <= Bt?))
B2H = B2H || (B%, <= Bt%)
BIN = BIN || (B', <= Btl,)

// decreasing C, won’t generate a feasible solution
if (B%, > Bt?,) break;
}
// increasing C; won’t satisfy Bt?
if ((B% > Bt?) && !B2N) break;
}
// increasing C, won’t satisfy Bt?%,
if ((B', > Bt',) && !B2H) break
}

return (optimal)
}

3.1 Search for Optimal Partitioning that Generates Maximal Revenue
with QoS Guarantees

We consider two variations of spillover-partitioning. The pure spillover-partitioning algo-
rithm finds the optimal partition allocation that would maximize the revenue earned per unit
time while satisfying QoS constraints specified in (2). The method essentially is exhaustive
search with heuristics being applied to improve search performance by eliminating combi-
nations that would not generate a feasible solution. A second variation is the fast spillover-
partitioning algorithm that applies a greedy heuristic search method to find a near optimal
solution fast at the expense of search quality. It should be noted that a solution found by
the pure or fast spillover-partitioning algorithm will be evaluated by the analytical model
developed. As we shall see, the solution found by the fast spillover-partitioning algorithm is
very close to that found by the pure spillover-partitioning algorithm but the search efficiency
is greatly improved.

3.1.1 Pure Spillover-Partitioning

Table 1 shows a pseudo code listing the pure spillover-partitioning algorithm utilizing exhaus-
tive search for finding optimal resource allocation. Pure spillover-partitioning CAC first elim-
inates all channel combinations that cannot even satisfy the QoS constraint of class 2 new
calls. The logic behind the elimination of these channel combinations is that these combina-
tions could not possibly lead to a feasible solution that could satisfy QoS constraints of all
service classes. Exhaustive search is then performed to find the best reward rate achievable.

Specifically, this algorithm first determines the minimum number of channels needed to
satisfy the QoS constraints of new/handoff calls. This is done by modeling the call admission

@ Springer

120 O. Yilmaz et al.

process of new (or handoff) calls of each service class as an M/M/n/n queue and deter-
mining the minimum number of channels that would have satisfied the QoS constraints
based on the Erlang-B function to know the call loss probability. This helps to eliminate all
(Cq, Cy, C3, Cy4) combinations that do not provide at least the minimum number of channels
to each service call in the rest of the search. For a (Cy, C,, C3, C4) combination that satisfies
the minimum-channel requirement, we increase C1, Cy, C3 and leave the rest to C4. At some
point we reach a Cy, C,, C3 combination such that allocating more channels to Py, P>, P3
will not leave enough channels to satisty the QoS constraint of class 2 new calls (admitted
only to P4). When this happens, we stop increasing the number of channels allocated to P3
because otherwise it would result in fewer channels allocated to P4. Similarly, if we see that
the QoS constraint of class 2 new calls cannot be satisfied in P3 and P4, we eliminate cases
in which P; is allocated with more channels. We apply the same logic to guide the channel
allocation to Py. After all feasible solutions are found, the algorithm searches for the optimal
solution by exhaustive search.

The time complexity of the pure spillover-partitioning algorithm is O(CN) where C is the
number of channels and N is the number of service classes multiplied by 2 (for handoff and
new calls). In our example system, N is 4 since there are two service classes (class 1 and 2),
each having handoff and new calls. This algorithm tries all possible combinations until it
fails to satisfy the QoS constraint of the service class with the least stringent requirements.
In the worst case the three loops in Table 1 will try O(CN) different channel combinations.
Therefore, the pure spillover CAC algorithm has a time complexity of O(CN).

3.1.2 Fast Spillover-Partitioning

Our fast spillover algorithm employs a greedy search method to guide the search of (Cy, Cy,
C3, Cy) to satisfy Condition (2). It may lead to a near optimal solution. This search consists
of two parts. In the first part we again look for a partition allocation that generates a feasible
solution, and in the second part we search for a partition allocation that generates the optimal
revenue, at least locally. Specifically, this algorithm searches for a feasible solution by adjust-
ing the partition size available to each service class in admitting its new or handoff calls. If in
the current iteration it fails to satisfy the QoS constraints of a service class, in the next iteration
itincreases the partition size available to this service class. Similarly, if in the current iteration
it satisfies the QoS constraints of a service class, then in the next iteration it decreases the
partition size available to this service class to make more resources available to the service
classes to attempt to satisfy the QoS constraints. The logic behind the greedy search is to
increase the reward rate by checking all channel combinations which are “A-close” to the
channel combination that currently yields the highest reward rate with QoS guarantees. Here a
channel combination (Cy, Cy, C3, C4) is “A-close” to channel combination (C}, Cj, C, C)
ifC— Akl < €] < C+ Ak, G, — Ak < C), < G+ AK,C3 — AK? < C) <
C3+ Ak, Cs = C — (C; + C2 4+ C3), and C, = C— (C} + C} + C}). The greedy algo-
rithm stops and returns the optimal channel combination found when none of the “A-close”
channel combinations can further increase the reward rate obtainable while satisfying QoS
constraints.

Table 2 shows a pseudo code listing of the fast spillover-partitioning CAC algorithm based
on greedy search. The greedy_search method takes A as input specifying the locality of
the maximum reward. For example, for A = 2 the algorithm stops when the partition allo-
cation (Cy, Ca, C3, Cy) leads a reward that is greater than the reward generated for all par-
tition allocations (C}, C, C5, C}), where C; —2k! < C) < C; +2k',C; —2k! < C) <
Cr +2k!,C3 — 2k? < C} < C3 +2k%,C, = C — (C] + C) + C}). This greedy search

@ Springer

Performance Analysis of Spillover-Partitioning Call Admission Control 121

Table 2 Pure spillover-partitioning CAC

Optimal_t greedy search(A) {
feasible = find_feasible()
optimal = find optimal (feasible)
return (optimal)

}

Optimal_t find feasible() {

// Determine the minimum number of channels needed by each service call
c min'y, = get min(C, k', Ay, nh) * k'

c_min', = get_min(C, k', Ay, nl) * k'
c min’, = get min(C, k%, A%, p%) * K
c min’, = get min(C, k?, A, ph) * K’

for (feasible = NULL;;) { // do until break
// set partitions acco;ding to minimum channels needed

pad = k' - (c_min% % k')

// pad channels to allocate P; and P, with a multiple of k; channel
Cy = c_minﬂ + pad

C3 = ciminﬂ - ciminﬂ

C; = (c_min', - C3 - Ci)

Cc, = (C - cimin%)

// check if at least min number of channels are reserved for each

// service call

if ((c_min',<=C) && (c_min',<=(C,+C3+Cy)) && (c_min%, <= C3+C;) && (c_min?,
<= Cy4))) |

feasible = check_optimality(Cy,Cz,Cs,Cy)

if (feasible == NULL) {
changed = false

// increase the minimum channel needed for each service call if QoS
// is not satisfied
if (B%, > Bt%) |

changed = true

c min®, = c_min?, + k?
}
if(B% > Bt?) |

changed = true

cimin% = cimin% + k°
}
if (B, > Bth) |

changed = true

ciminﬂ = cimin% + k*
}
if (B'y > Bth) |

changed = true

c min', = ¢ min', + k'
}
// Adjust minimum number of channels to preserve partition order
if (!changed) ciminﬂ = cimin% + k?
if(cimin% > cimin%) cimin% = ciminﬂ
1f(c7mln% > cimln%) cimin% + k!
if (c_min, > c_min%) c_min% = c_min%

}
else break; // a feasible solution is found

}

else break; // no solution is found
}
return (feasible)

}
Optimal_t find optimal (feasible) {

cur = feasible
optimal = NULL
// do until finding the local maximum
for (; (optimal==cur);cur=optimal)
// search for a local maximum
for (C;=cur.C;- (k'*A) ; C;<=cur.C,+ (k' *A) ; C,=C1+k’)
for (C,=cur.C,- (k'**A) ; C,<=cur.Cy+ (k**A) ; C,=C,+k')
for (Cs=cur.Cs= (k’*A) ; Cs<=cur.Cs+ (k**A) ; C3=C5+k”) {
Ci = C = (Ci+CytCy)
if (c min®,<=Cy) {
optimal = check_optimality(Cy,Cz,Cs,Cy)
}

return (optimal)

@ Springer

122 O. Yilmaz et al.

method first determines a feasible solution via find_feasible, and later uses this solution as
the starting point to determine a feasible solution that generates a reward higher than the
reward generated by all (C}, C;, C;, C;) combinations.

Here is how find_feasible works: It first determines the minimum number of channels
needed by each service call to satisfy the QoS constraints. Later it repeats the following
greedy search steps until it finds a near optimal partition allocation. It sets partitions such
that (a) P4 contains the minimum number of channels needed by class 2 new calls; (b) P3 and
P4 contain the minimum number of channels needed by class 2 handoff calls; (c) P2, P3 and
P4 contain the minimum number of channels needed by class 1 new calls; and (d) finally, P,
contains the remaining channels. We configure P4 such that P; and P, each have a number of
channels that are multiple of k!. Later we check if the current partition allocation generates
a feasible solution. If the current allocation does not lead a feasible solution, we increase
the minimum number of channels needed by each service class that fails to satisfy QoS
constraints, such that it can accommodate one more call. Finally, we adjust the number of
channels available for each service call such that ctl1 > cr]‘ > c}ll > cll1 is preserved and we
repeat these steps until we find a feasible solution.

For the current partition allocation (Cy, C;, C3, C4), find_optimal evaluates all combi-
nations of (C}, C5, C, C}), where C; — A*k! < C] < C; + A*k!,C, — A*k! < C) <
Cr + A%k, C3 — A'K? < € < C3 + A*K?,C) = C — (C] + C) + C}) to determine
the partition allocation that would generate the highest reward. If the optimal allocation is
different from the current allocation, we set the current allocation as the optimal and repeat
evaluation until we determine that the current value is optimal.

While in practice fast spillover CAC takes a much shorter time to execute compared with
pure spillover CAC, the theoretical worst case time complexity of this algorithms is still
O(CV), with C being the number of channels and N being the number of service classes
multiplied by 2, again due to the three loops in the find_optimal function in Table 2.

4 Numeric Data and Analysis

We compare spillover-partitioning algorithm with existing CAC algorithms with revenue opti-
mization and QoS guarantees, including partitioning, threshold-based, partitioning-threshold
hybrid CAC algorithms [24] in terms of execution time and revenue maximization. We briefly
explain these baseline CAC algorithms as follows. Partitioning CAC divides the total number
of channels into several fixed partitions, with each partition being reserved to serve handoff
or new calls of a particular service class. For our example system there are four partitions:
class 1 handoff calls, class 1 new calls, class 2 handoff calls, and class 2 new calls. Once
a partition is reserved, it cannot be used by others. Thus, each partition may be modeled
as an M/M/n/n queue by which the rejection/blocking probability in each partition can be
easily calculated as the probability of not being able to serve one more call in that spe-
cific partition. The optimization problem here is to find the best partition (C}II, Clll, C}ZI, Cﬁ)
such that Cll1 +Cl+ Cﬁ + C2 = C with reward optimization and QoS guarantees. Thresh-
old-based CAC creates thresholds to differentiate handoff calls from new calls, viz., Cll1T
is the threshold for class 1 handoff calls; Crl1T is the threshold for class 1 new calls; CﬁT is
the threshold for class 2 handoff calls; and CﬁT is the threshold for class 2 new calls. The
meaning of a threshold is that when the total number of channels already allocated exceeds
this threshold, the system will not admit calls of the corresponding service type any more.
The optimization problem is to find the best set of thresholds (C}IIT, C}]T, CﬁT, CiT) such that
CrllT <C, C}]lT <C, CﬁT < Cand CﬁT < C with reward optimization and QoS satisfaction.

@ Springer

Performance Analysis of Spillover-Partitioning Call Admission Control 123

Table 3 Input parameters and default values used in numerical analysis

Parameter Description Value

)»111 Class 1 handoff call arrival rate 1.5 <)\}]1 <6.2
Arll Class 1 new call arrival rate 30<)\,11 <124
)L}ZI Class 2 handoff call arrival rate 2.7 <)\ﬁ <284
A% Class 2 new call arrival rate 36 < A% <379
k! Class 1 bandwidth requirement 4 channels

K2 Class 2 bandwidth requirement 1 channel

C Total number of channels in the cell 80 channels

[,Lllj, [,Llll, uﬁ, u% Normalized departure rates of class 1 and class 2 calls 1

B}11t Class 1 handoff call threshold blocking probability 0.02

B}lt Class 1 new call threshold blocking probability 0.05

Bﬁt Class 2 handoff call threshold blocking probability 0.04

B%t Class 2 new call threshold blocking probability 0.10

Finally partitioning-threshold hybrid CAC (or hybrid CAC for short) is a mix of partitioning
and threshold-based CAC. It has five partitions, with four of them reserved for servicing indi-
vidual handoff or new calls of service class, and one being reserved as a shared partition for
servicing all service classes based on thresholds. The optimization problem here is to find the
best partition (Cf, Cj, Cq, C3, Cs) and the best set of thresholds (Cly g, Clr 5. Chr.s Cir g)
within Cs such that C} +Cj 4+ Cf +C5 +Cs = Cand Cjp g < Cs, Cjp g < Cs, Cip g < Cs
and C]%T,S < Cs with reward optimization and QoS guarantees.

To compare these algorithms, we run each algorithm under a set of arrival and depar-
ture rates. As in [25], we used arrival rates in the range of 1.5 <)Llll <62,30 <)Lrll <
12.4,2.7 < Aﬁ <284,and 3.6 < Aﬁ < 37.9. Table 3 summarizes the input parameters and
default values used in our numerical analysis. We test each algorithm for 25 different arrival
rate combinations of class 1 and 2 service classes. The departure rate is normalized to one
with respect to the arrival rate. The reason for testing CAC algorithms with a wide range
of arrival rates is to create diverse input traffic conditions which some of them representing
heavy-load traffic conditions and some of them presenting medium-load to light-load condi-
tions. The upper bound arrival rate of new calls (or handoff calls) in a class has been carefully
chosen such that a system with 80 channels can satisfy the QoS constraints when the system
serves only new calls (handoff calls correspondingly) of the service class alone. Out of the
25 test cases, we have created 10 test cases representing heavy-load input traffic conditions
and the remaining for medium to light-load traffic conditions.

4.1 Performance Comparison in Solution Efficiency

We have implemented all CAC algorithms in C and run the test cases on a PC with 2.0 GHz
Intel© Centrino processor running the Windows© XP operating system. Figure 4 shows a
“notched-box plot” summarizing the time spent to determine the optimal partition allocation
that would generate the maximum reward with QoS guarantees for the set of arrival/depar-
ture rates considered. The thick line in a box plot represents the median value in the 20
cases tested. The bottom and top lines of the shaded box represent the execution time values
obtained are below 25 and 75%, respectively. The horizontal bar at the top represents the

@ Springer

124 O. Yilmaz et al.

(]
|

Elapsed Time (sec)
100
|

R

-
T T T T T
Partitioning Threshold Hybrid Spillover Fast Spillover

Algorithm Name

Fig. 4 Notched-box plot for time spent

Table 4 Average time spent to determine channel allocation for revenue optimization by CAC algorithms

Algorithm name Partitioning Threshold-based Hybrid Spillover Fast spillover

Average elapsed time (s) 0.32 29,572 27,595 2,202 151

largest non-outlier observation. Notches around medians indicate the uncertainty about the
medians obtained by the algorithm. We summarize the average elapsed time needed for each
algorithm in Table 4.

With less than a second to calculate the optimal partition allocation, the partitioning
algorithm performs the best in terms of execution time. This algorithm allocates fixed par-
titions, one for each service class. As each partition can be modeled as an M/M/n/n queue,
closed-form analytical solutions can be pre-generated and looked up to calculate the block-
ing/dropping probabilities and the reward obtainable. The second best algorithm is the fast
spillover-partitioning algorithm with 151 seconds on the average. This algorithm performs
significantly better than other algorithms which do not have closed-form solutions. The next
best algorithm is the pure spillover-partitioning algorithm with 2,202 s. This algorithm cal-
culates the maximum channel allocation in less than 8% of the average time spent by the
threshold-based and the hybrid CAC algorithms. The heuristics applied improve the execu-
tion time of this algorithm significantly, while not sacrificing the optimality of the solution.
The next best algorithm is the partitioning-threshold hybrid CAC with 27,595s. This algo-
rithm has fixed partitions, one for each service class. The remaining channels are allocated
to a share partition that accommodates all service classes based on threshold-based CAC.
Finally, threshold-based CAC is the worst in execution time, with 29,572 s on the average.
This algorithm is pure threshold-based, with each service class having a threshold. It is
computationally expensive to determine optimal thresholds.

@ Springer

Performance Analysis of Spillover-Partitioning Call Admission Control

125

4.2 Performance Comparison in Solution Quality

Figure5 shows a notched-box plot diagram for the maximum reward generated with QoS
guarantees by the optimal channel allocation of each CAC algorithm. Figure6 shows a
notched-box plot diagram for the revenue ratio relative to the upper bound revenue obtained,

780
|

\

760
|

740
|

Reward Rate
720
\

700
|

680
|

YY
AR

660
|

e

T T T T
Partitioning Threshold Hybrid Spillover

Algorithm Name

Fig. 5 Notched-box plot for revenue generated

Fast Spillover

g] | 7
— o
T o
o 1 T
IS 1 °
kel S i
T
X S
o)
> o
c o
(-
v 27
Y o
o
[<)
Q]
S |
wn o
S 4
S T T T T T
Partitioning Threshold Hybrid Fast Spillover Pure Spillover

CAC Algorithm Name

Fig. 6 Notched-box plot for revenue ratio relative to the upper bound revenue

@ Springer

126 O. Yilmaz et al.

Table 5 Average and maximum reward rates generated by CAC algorithms

Algorithm name Partitioning Threshold-based Hybrid Spillover Fast spillover
Average reward rate 667 707 708 710 710
Maximum reward rate 688 763 771 780 778

Revenue ratio 0.9884 0.9956 0.9979 0.9998 0.9995

i.e., the ratio of the reward rate obtained by each CAC algorithm to the upper bound reward
rate obtained by an ideal CAC algorithm with infinite channel resources to accept calls.
We also summarize the average and maximum reward rates as well as the revenue ratio by
each algorithm in Table 5. We see that both pure and fast spillover CAC algorithms compare
favorably over existing CAC algorithms and are able to generate revenue very close to the
upper bound revenue generated. The revenue generated by fast spillover CAC is comparable
to that generated by pure spillover CAC, both having about the same revenue ratio relative
to the upper bound revenue obtained.

Figure 7 shows specific revenue generated by spillover-partitioning CAC against that gen-
erated by an ideal CAC algorithm with infinite channel resources to accept calls, as well as
against those generated by existing CAC algorithms for 10 high-load test cases (presented in
the order of increasing traffic load). These test cases represent situations in which the system
is heavily loaded with high call traffic under which spillover performs significantly better than
existing CAC algorithms for revenue optimization with QoS guarantees. In these cases, the
partitioning algorithm fails to generate feasible solutions. The partitioning algorithm reserves
a fixed partition for each service class. Thus, it could not share resources effectively and very
often could not even generate a feasible solution when call arrival rates are high. As aresult, it
performs the worst. At higher arrival rates, both pure and fast spillover-partitioning CAC are
capable of generating revenue very close to the maximum obtainable revenue generated by
the ideal CAC algorithm. Further, they perform about 1% better than partitioning-threshold
hybrid CAC and 2% better than the threshold-based CAC when the system is heavily loaded.

While 1-2% in solution quality in reward rate may not seem much, the net gain in revenue
(e.g., dollars) expressed here is (in the unit of) per unit time (e.g., minute). Thus, the camula-
tive reward accrued over a period of time would be very significant. Moreover, the solution

800 -
790
% 780
= —&— Upper Bound
-
] 1 =~ Pure Spillover
3 .
& 760 ~fll- Fast Spillover
~pe Hybrid
507 = Threshold
740

1 2 3 4 5 6 7 8 9 10
Case Number (in the Order of Increasing Load)

Fig. 7 Comparing spillover-partitioning CAC against ideal and existing CAC algorithms

@ Springer

Performance Analysis of Spillover-Partitioning Call Admission Control 127

efficiency by spillover-partitioning makes it practically possible to obtain at least near-opti-
mal solutions to be applied at runtime, compared with threshold-based CAC algorithms,
which, because of high computational complexity, would take days to obtain a solution.

4.2.1 Sensitivity Analysis of Solution Quality

Recall that fast spillover CAC consists of two phases. The first phase searches for a feasible
initial solution. The second phase performs a greedy search to increase the solution quality.
The greedy search continues until the algorithm cannot improve the solution quality any fur-
ther. Therefore, the initial solution conceivably may have a high impact on the final solution
quality. Below we perform a sensitivity analysis to test the sensitivity of the solution quality
of the initial solution (relative to the solution found by pure spillover CAC) with respect to
the traffic demand and QoS constraints, and see whether it affects the solution quality of the
final solution of fast spillover CAC.

Figure 8 shows the solution quality of the initial solution as the traffic demand increases,
going from case 1 with A} = 3.66, 1} = 7.32,2% = 2.69, and A2 = 3.59 to case 12 with
kﬂl = 3.60,)»11‘ = 7.32,)L}é: = 5.99, and)\% = 7.98. We observe that the solution quality of
the initial solution relative to that of the pure spillover algorithm remains about the same and
is largely insensitive to the traffic demand, with the minimum solution quality ratio at 0.96
and the maximum solution quality ratio at 0.98. Figure 8 also shows the solution quality of
the final solution found by fast spillover CAC. We see that the solution quality of the final
solution found by fast spillover CAC is largely insensitive to the initial solution found in the
first phase of the algorithm.

Figure 9 shows the solution quality of the initial solution as we reduce QoS constraints,
going from case 1 with Bt = 0.01, Blt = 0.025, B2t = 0.02, and B2t = 0.05 to case 5
with Bit = 0.05, Blt = 0.125, B{t = 0.1, and B2t = 0.25. The figure shows three traffic
demand cases, namely, high, medium, and low. We see that in all traffic demand cases when
QoS constraints are reduced (made less stringent), the solution quality of the initial solution
decreases because less stringent QoS constraints allow the find_feasible function to find a
solution more easily. This indicates that the initial solution is sensitive to QoS constraints.
However, the final solution result found by the greedy search remains the same regardless of
the solution quality of the initial solution. We conclude that the solution quality of the final

800
790 |
780
770
760 -,_‘,,JI —— INITIAL
750 ~B—FAST

—i—PURE

Reward Rate

740

730

720 -
1 2 3 4 5 6 7 8 9 10 11 12

Case Number (in the Order of Increasing Traffic Demand)

Fig. 8 Sensitivity of initial solution quality with respect to traffic demand

@ Springer

128 O. Yilmaz et al.

790 - Pe—Pe——PePe=)

770 - ks S =3¢ = HIGH-INITIAL
h*——-.—
= Mowrs —&— HIGH-FAST
730 - —— - =
% = o = o —@— HIGH-PURE
& 710 e
T 690 e ¥ — - MEDIUM-INITIAL
mw -
Z 670" i —f— MEDIUM-
* 650 FAST&PURE
A ———h———— === LOW-INITIAL
630 - e
B ettt —— LOW-FAST&PURE
610 - ~
S~
590 -
1 2 3 4 5

Case Number (in the Order of Decreasing QoS Constraints)

Fig. 9 Sensitivity of initial solution quality with respect to QoS constraints

solution found by the fast spillover CAC algorithm is insensitive to the solution quality of
the initial solution.

5 Conclusion and Future Work

In this paper we have developed and analyzed spillover-partitioning CAC for serving multiple
service classes in mobile wireless networks for revenue optimization with QoS guarantees.
We compared the performance of spillover-partitioning CAC with existing CAC algorithms
in terms of the solution efficiency (time spent) and solution quality (revenue generated). We
presented two versions of spillover-partitioning CAC: pure spillover-partitioning CAC that
determines the exact optimal solution and fast spillover-partitioning CAC that determines
a near optimal solution by using a greedy search method. Although partitioning CAC was
significantly faster than all other algorithms, it performed poorly in terms of revenue optimiza-
tion. The threshold-based and the hybrid CACs performed reasonably well in terms of solution
quality. However, these algorithms performed poorly in solution efficiency. We showed that
both versions of spillover-partitioning CAC are able to generate higher rewards than existing
CAC algorithms while providing QoS guarantees. The 1-2% difference in solution quality
is considered significant because the objective function is revenue per unit time. Moreover
both versions are able to generate solutions with much higher search efficiency. In particular,
fast spillover-partitioning CAC offers very high solution efficiency while generating near
optimal solutions comparable to optimal solutions found by pure spillover-partitioning or
threshold-based CAC algorithms.

We also performed a sensitivity analysis of the solution quality of the initial solution found
by fast spillover CAC (relative to the upper bound) with respect to the total traffic demand
and QoS constraints. We observed that the solution quality of the initial solution is relatively
insensitive to the traffic demand. However, the initial solution quality is strongly affected by
QoS constraints, exhibiting a lower solution quality when QoS constraints are less stringent.
Nevertheless, we observed that the final solution quality is relatively insensitive to the initial
solution quality found by fast spillover CAC over a wide range of traffic demands and QoS

@ Springer

Performance Analysis of Spillover-Partitioning Call Admission Control 129

constraints. In the future, we plan to thoroughly validate analytical results with more test
cases generated through random test case generation as well as with simulation studies.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Lin, Y. B., & Chlamtac, 1. (2001). Wireless and mobile network architecture. New York, NY: Wiley.
Hong, D., & Rappaport, S. S. (1989). Priority oriented channel access for cellular systems serving vehic-
ular and portable radio telephones. Communications, Speech and Vision, IEE Proceedings I, 131(5),
339-346.

Hong, D., & Rappaport, S. S. (1986). Traffic model and performance analysis for cellular mobile radio
telephone systems with prioritized and non-prioritized handoff procedures. IEEE Transactions on Vehic-
ular Technology, VT35(3).

Guerin, R. (1988). Queuing-blocking systems with two arrival streams and guarded channels. /EEE
Transactions on Communication, 36, 153-163.

. Yang, S.-T., & Ephiremides, A. (1996). On the optimality of complete sharing policies of resource

allocation. IEEE 35th Decision and Control (pp. 299-300). Japan: Kobe.

Epstein, B., & Schwartz, M. (1995). Reservation strategies for multi-media traffic in a wireless environ-
ment. 45th IEEE vehicular technology conference (pp. 165-169). Chicago, IL.

Fang, Y. (2003). Thinning algorithms for call admission control in wireless networks. IEEE Transactions
on Computers, 52(5), 685-687.

Wang, J., Zeng Q., & Agrawal, D. P. (2003). Performance analysis of a preemptive and priority reser-
vation handoff algorithm for integrated service-based wireless mobile networks. IEEE Transactions on
Mobile Computing, 2(1), 65-75.

Lai, F. S., Misic, J., & Chanson, S. T. (1998). Complete sharing versus partitioning: Quality of service
management for wireless multimedia networks. Tth international conference on computer communica-
tions and networks, (pp. 584-593). Lafayette, Louisiana.

Le Grand, G., & Horlait, E. (2001). A Predictive end-to-end QoS scheme in a mobile environment. 6th
IEEE symposium on computers and communications pp. (534-539). Hammamet, Tunisia.

Nasser, N., & Hassanein, H. (2004). Prioritized multi-class adaptive framework for multimedia wireless
networks. IEEE international conference on communications (pp. 4295-4300). Paris, France.
Ogbonmwan, S. E., Li, W., & Kazakos, D. (2005). Multi-threshold bandwidth reservation scheme of
an integrated voice/data wireless network. 2005 international conference on wireless networks,(pp.
226-231). Maui, Hawaii: Communications and Mobile Computing.

Jeong, D., Choi, D.-K., & Cho, Y. (2001). The performance analysis of QoS provisioning method with
buffering and CAC in the multimedia wireless internet. 54th IEEE vehicular technology conference, (pp.
807-811). Atlantic City, New Jersey.

Zhang, Y., & Liu, D. (2001). An adaptive algorithm for call admission control in wireless networks.
IEEE Global telecommunications conference (pp. 3628-3632). San Antonio, TX.

Cheng, S.-T., & Lin, J.-L. (2005). IPv6-based dynamic coordinated call admission control mechanism
over integrated wireless networks. IEEE Journal on Selected Areas in Communications, 23,2093-2103.
Chen, H., Kumar, S. & Kuo, C.-C. J. (2000).Differentiated QoS aware priority handoff in cell-based
multimedia wireless network. IS&T/SPIE’s 12th International Symposium (pp. 940-948). San Joes, CA.
Haung, Y.-R., & Ho, J.-M. (2002). Distributed call admission control for a heterogeneous PCS network.
IEEE Transactions on Computers, 51, 1400-1409.

Choi, J.-G., & Bahk, S. (2001). Multiclass call admission control in QoS-sensitive CDMA networks.
IEEE international conference on communications (pp. 331-335). Helsinki, Finland.

Li, B, Lin, C., & Chanson, S. T. (1998). Analysis of a hybrid cutoft priority algorithm for multiple
classes of traffic in multimedia wireless networks. Wireless Networks, 4, 279-290.

Ye, J., Hou, J., & Papavassilliou, S. (2002). A comprehensive resource management for next generation
wireless networks. IEEE Transactions on Mobile Computing, 1(4), 249-263.

Chen, I. R., & Chen, C. M. (1996). Threshold-based admission control policies for multimedia servers.
The Computer Journal, 39(9), 757-766.

Keon, N. J., & Anandalingam, G. (2003). Optimal pricing for multiple services in telecommunications
networks offering quality-of-service guarantees. IEEE/ACM Transactions On Networking, 11(1), 66-80.
Huang, L., Kumar, S., & Kuo, C.-C. J. (2004). Adaptive resource allocation for multimedia QoS man-
agement in wireless networks. IEEE Transactions on Vehicular Technology, 53, 547-558.

Chen, 1. R., Yilmaz, O., & Yen, L. L. (2006). Admission control algorithms for revenue optimization
with QoS guarantees in mobile wireless networks. Wireless Personal Communications, 38(3), 357-376.

@ Springer

130

0. Yilmaz et al.

25. Yilmaz, O., & Chen, I. R. (2006). Utilizing call admission control to derive optimal pricing of multiple
service classes in wireless cellular networks. 12th IEEE international conference on parallel and dis-
tributed systems (pp. 605-612). Minneapolis, MN.

26. Trivedi, K. S., Ciardo, G., & Muppala, J. (1999). SPNP Version 6 User Manual. Department of Electrical
Engineering, Durham, NC: Duke University.

Author Biographies

@ Springer

Okan Yilmaz received his Bachelor of Science and Master of Science
degrees in computer engineering and information science from Bilkent
University, Ankara, Turkey. He received his Ph.D. degree in computer
science from Virginia Tech. His research interests include wireless com-
munications, multimedia, mobile computing, and software engineering.
Dr. Yilmaz has worked at various telecommunication software compa-
nies. He currently works at NeuStar Inc., Sterling, Virginia. Dr. Yilmaz
is a member of IEEE/CS.

Ing-Ray Chen received the BS degree from the National Taiwan Uni-
versity, Taipei, Taiwan, and the MS and PhD degrees in computer science
from the University of Houston. He is a professor in the Department of
Computer Science at Virginia Tech. His research interests include mobile
computing, wireless networks, security, data management, multimedia,
distributed systems, real-time intelligent systems, and reliability and per-
formance analysis for which he has published over 60 journal articles.
Dr. Chen currently serves as an editor for Wireless Personal Communi-
cations, The Computer Journal, Security and Communication Networks,
Journal of Wireless Networks and Mobile Computing, and International
Journal on Artificial Intelligence Tools. He is a member of the IEEE/CS
and ACM.

Gregory Kulczycki received his PhD degree in Computer Science from
Clemson in 2004. He is currently an Assistant Professor of Computer
Science at Virginia Tech. His research areas include performance analy-
sis, component-based software development, software engineering, and
formal methods. Dr. Kulczycki is a member of the IEEE/CS and ACM.

Performance Analysis of Spillover-Partitioning Call Admission Control 131

William B. Frakes is an associate professor in the computer science
department at Virginia Tech. He chairs the IEEE TCSE committee on
software reuse, and was an associate editor of IEEE Transactions on
Software Engineering. He has a B.L.S. from the University of Louis-
ville, an M.S. from the University of Illinois at Urbana-Champaign, and
an M.S. and Ph.D. from Syracuse University.

@ Springer

	Performance Analysis of Spillover-Partitioning Call Admission Control in Mobile Wireless Networks
	Abstract
	1 Introduction
	2 System Model
	3 Spillover-Partitioning Call Admission Control
	3.1 Search for Optimal Partitioning that Generates Maximal Revenuewith QoS Guarantees

	4 Numeric Data and Analysis
	4.1 Performance Comparison in Solution Efficiency
	4.2 Performance Comparison in Solution Quality

	5 Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

