Skip to main content
Log in

Controlling Intercell Interference in CDMA-based Fixed Wireless Networks Through Multirate Techniques

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A number of research works have suggested a possible capacity advantage when employing direct sequence-code division multiple access (DS-CDMA) instead of the more common time division multiple access option for fixed broadband wireless access networks operating at millimeter-waves. The choice of this multiple access scheme, which, up to now, has not been foreseen by recent WiMax (worldwide interoperability for microwave access) standards, exhibits an improved performance in terms of cochannel interference in the upstream, even though it experiences higher interference in the downstream. The present paper focuses on enhancing the bottleneck downstream performance of fixed wireless networks by proposing a methodology for controlling the signal-to-interference ratio throughout the cell, so that all subscribers meet the given interference quality-of-service specifications. This is accomplished by exploiting the properties of a combination of multirate CDMA techniques. The paper describes a simple policy for code assignment, which is proved to be optimal, incorporating the effect of rain fading over multiple paths. The performance of the algorithm is tested against single code DS-CDMA both under long term channel statistics (static code assignment) and under dynamic channel effects (dynamic code assignment). The first test verifies the compliance of all sector subscribers with more demanding SIR specifications, while the second yields a significant improvement in terms of resource utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEEE 802.16. (2002). IEEE standard for local and metropolitan area networks—part 16: Air interface for fixed broadband wireless access systems.

  2. ETSI TS 101 999 V1.1.1. (2002). Broadband radio access networks (BRAN); HIPERACCESS; PHY protocol specification.

  3. http://www.wimaxforum.org/home/.

  4. Mähönen P., Saarinen T., Shelby Z., Muñoz L. (2001) Wireless internet over LMDS: Architecture and experimental implementation. IEEE Communications Magazine 39(5): 126–132

    Article  Google Scholar 

  5. Li B., Qin Y., Low C. P., Gwee C. L. (2007) A survey on mobile WiMax. IEEE Communications Magazine 45(12): 70–75

    Article  Google Scholar 

  6. Koffman I., Roman V. (2002) Broadband wireless access solutions based on OFDM access in IEEE 802.16. IEEE Communications Magazine 40(4): 96–103

    Article  Google Scholar 

  7. Anastasopoulos M. P., Arapoglou P. -D. M., Kannan R., Cottis P. G. (2008) Adaptive routing strategies in IEEE 802. 16 multi-hop wireless backhaul networks based on evolutionary game theory. IEEE Journal of Selected Areas in Communications 26(7): 1218–1225

    Article  Google Scholar 

  8. ITU-R. (2007). Propagation data and prediction methods required for the d esign of terrestrial broadband radio access systems operating in a frequency range from 3 to 60 GHz. Propagation in non-ionized media. ITU-R Recommendation P. 1410. Geneva.

  9. Halbauer, H., Jaenecke, P., & Sari, H. (2000). An analysis of code-division multiple access for LMDS networks. In 7th Europe conference fixed radio systems network (pp. 173–180). Dresden.

  10. Sari H. (2001) A multimode CDMA with reduced intercell interference for broadband wireless networks. IEEE Journal on Selected Areas in Communications 19(7): 1316–1323

    Article  Google Scholar 

  11. Arapoglou P. -D. M., Panagopoulos A. D., Kanellopoulos J. D., Cottis P. G. (2005) Intercell radio interference studies in CDMA-based LMDS networks. IEEE Transactions on Antennas and Propagation 53(8): 2471–2479

    Article  Google Scholar 

  12. I, C.-L., & Gitlin, R. D. (1995). Multi-code CDMA wireless personal communications networks. In Proceedings of international conference on communications, ICC 95 (pp. 1060–1064). Seattle.

  13. I, C.-L., & Gitlin, R. D. (1995). Performance of multi-code CDMA wireless personal communications networks. In Proceedings of the IEEE vehicular technology conference, VTC 95 (pp. 907–911). Chicago.

  14. I, C.-L., & Sabnani, K. K. (1995). Variable spreading gain CDMA with adaptive control for integrated traffic in wireless networks. In Proceedings of the IEEE vehicular technology conference, VTC 95 (pp. 794–798). Chicago.

  15. Ottosson, T., & Svensson, A. (1995). Multi-rate schemes in DS/CDMA systems. In Proceedings of the IEEE vehicular technology conference, VTC 95 (pp. 1006–1010). Chicago.

  16. Arapoglou P.-D. M., Chatzarakis G. E., Cottis P. G. (2005) Applying multicode CDMA for MAI reduction in fixed broadband wireless application networks. Mediterranean Microwave Symposium, Athens, pp 6–8

    Google Scholar 

  17. Papazian P. B., Hufford G. A., Achatz R. J., Hoffman R. (1997) Study of the local multipoint distribution service radio channel. IEEE Transactions on Broadcasting 43(2): 175–184

    Article  Google Scholar 

  18. Soma P., Ong L. C., Sun S., Chia M. Y. W. (2003) Propagation measurements and modeling of LMDS radio channel in Singapore. IEEE Transaction on Vehicular Technology 52(3): 595–606

    Article  Google Scholar 

  19. Paraboni A., Masini G., Elia A. (2002) The effects of precipitation on microwave LMDS networks—performance analysis using a physical raincell model. IEEE Journal on Selected Areas in Communications 20(3): 615–619

    Article  Google Scholar 

  20. Chu C. -Y., Chen K. S. (2005) Effects of rain fading on the efficiency of the Ka-band LMDS system in the Taiwan area. IEEE Transaction on Vehicular Technology 54(1): 9–19

    Article  Google Scholar 

  21. Panagopoulos A. D., Arapoglou P. -D. M., Kanellopoulos J. D., Cottis P. G. (2007) Intercell radio interference studies in broadband wireless access networks. IEEE Transaction on Vehicular Technology 56(1): 3–12

    Article  Google Scholar 

  22. Novák C., Tikk A., Bitó J. (2003) Code sectoring methods in CDMA-based broadband point-to-multipoint networks. IEEE Microwave and Wireless Components Letters 13(8): 320–322

    Article  Google Scholar 

  23. ETSI EN 301 215-3 V1.1.1, Fixed radio systems; Point to multipoint antennas; antennas for point-to-multipoint fixed radio systems in the 11 GHz to 60 GHz band; part 3: multipoint multimedia wireless system in the 40.5 to 43.5 GHz, Final Draft, European Standard.

  24. Panagopoulos A. D., Kanellopoulos J. D. (2003) Statistics of differential rain attenuation on converging terrestrial propagation paths. IEEE Transaction on Antennas and Propagation 51(9): 2514–2517

    Article  Google Scholar 

  25. ITU-R. (2007). Characteristics of precipitation for propagation modeling. In Propagation in non-ionized media. ITU-R Recommendation P. 837. Geneva.

  26. Ayyagari D., Ephremides A. (1999) Cellular multicode CDMA capacity for integrated (voice and data) services. IEEE Journal on Selected Areas in Communications 17(5): 928–938

    Article  Google Scholar 

  27. Kim D. K., Sung D. K. (2001) Capacity estimation for a multicode CDMA system with SIR-based power control. IEEE Transactions on Vehicular Technology 50(3): 701–710

    Article  Google Scholar 

  28. Kang C. S., Sung D. K. (2002) Capacities of spectrally overlaid single-code and multicode CDMA systems. IEEE Transactions on Vehicular Technology 51(5): 839–854

    Article  Google Scholar 

  29. Minn T., Siu K. -Y. (2000) Dynamic assignment of orthogonal variable-spreading-factor codes in W-CDMA. IEEE Journals on Selected Areas in Communications 18(8): 1429–1440

    Article  Google Scholar 

  30. Woo T.-K. (2002) Orthogonal variable spreading codes for wide-band CDMA. IEEE Transactions on Vehicular Technology 51(4): 700–709

    Article  MathSciNet  Google Scholar 

  31. Kim D. (1997) Downlink power allocation and adjustment for CDMA cellular systems. IEEE Communications Letters 1(4): 96–98

    Article  Google Scholar 

  32. Maseng T., Bakken P. M. (1981) A stochastic model for rain attenuation. IEEE Transactions on Communication 29(5): 660–669

    Article  Google Scholar 

  33. Lemorton J., Castanet L., Lacoste F., Riva C., Matricciani E., Fiebig U. -C., Vande Kamp M., Martellucci A. (2007) Development and validation of time-series synthesizers of rain attenuation for Ka-band and Q/V-band satellite communication systems. International Journal of Satellite Communications Network 25(6): 575–601

    Article  Google Scholar 

  34. Panagopoulos A. D., Kanellopoulos J. D. (2003) On the rain attenuation dynamics: Spatial-temporal analysis of rainfall rate and fade duration statistics. International Journal of Satellite Communications and Networking 21(6): 595–611

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelis-Daniel M. Arapoglou.

Additional information

This work is supported by the Programme of the 8th Session of the joint Greek-Italian Scientific and Technological Co-Operation 2006–2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arapoglou, PD.M., Papaioannou, P.I., Panagopoulos, A.D. et al. Controlling Intercell Interference in CDMA-based Fixed Wireless Networks Through Multirate Techniques. Wireless Pers Commun 54, 729–744 (2010). https://doi.org/10.1007/s11277-009-9779-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-009-9779-z

Keywords

Navigation