Skip to main content
Log in

Antenna-Array-Assisted Frequency Offset Estimation and Data Detection in an Uplink Multiuser MIMO-OFDM Interference Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Due to the popularity of IEEE 802.11a/g/n wireless local area networks, the high-density deployment of access points and their serious mutual interference have become a pressing concern, and made both frequency acquisition and data detection even more difficult. In addition, improving the network coverage and scalability in the mesh mode of IEEE 802.16 wireless metropolitan area network, space and frequency information can provide abundant scheduling information under the configuration. In light of this, this paper presents an antenna-array-assisted algorithm to solve these two problems in a multiuser multiple-input-multiple-output orthogonal frequency division multiplexing interference network. The algorithm begins with the estimation of three channel parameters: frequency offsets, delays and angle selectivity. To make a good use of the array signal characteristics, these three parameters are estimated in a frequency/delay-angle-frequency/delay (FAF) tree structure, in which two frequency/delay estimations and one angle estimation are employed alternatively. One special feature in the FAF tree structure is that temporal filtering or spatial beamforming is invoked between the parameter estimations to decompose signals so as to enhance the estimation accuracy. Thereafter, based on these parameter estimates, a data detection procedure is developed to mitigate both multiple access interference (MAI) and co-channel interference (CCI). Simulations show that the proposed algorithm can provide satisfactory performance even in networks with MAIs and CCIs sharing the same frequency band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEEE Std. 802.11a. (1999). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: High speed physical layer in the 5 GHz band.

  2. IEEE Std. 802.g. (2003). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Further higher data rate extension in the 2.4 GHz band.

  3. IEEE 802.11 WG. (2007). IEEE P802.11n/D3.0 draft standard for information technology-telecommunications and information exchange between systems—Local and metropolitan networks—Specific requirements-part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 4: Enhancements for higher throughput.

  4. IEEE Std 802.16-2004. (2004). IEEE standard for local and metropolitan area networks part 16: Air inteface for fixed broadband wireless access systems.

  5. Foschini G.J. (1996) Layered space-time architecture for wireless communication in a fading environment when using multiple antennas. Bell Labs Technical Journal 1: 41–59

    Article  Google Scholar 

  6. Paulraj A.J., Gore D.A., Nabar R.U., Bolcskei H. (2004) An overview of MIMO communications—A key to gagabit wireless. Proceedings on IEEE 92: 198–218

    Article  Google Scholar 

  7. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance analysis and code construction. IEEE Transactions on Information Theory, 744–765.

  8. Zhao, Y., & Haggman, S.-G. (1998). BER analysis of OFDM communication systems with intercarrier interference. In Proceedings of IEEE Communication Technology Conference.

  9. Stamoulis, A., Diggavi, S. N., & Al-Dhahir, N. (2002). Intercarrier interference in MIMO OFDM. IEEE Transaction in Signal Processing (pp. 2451–2464).

  10. Moose, P. H. (1994). A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transaction on Communication, 42(10).

  11. Morelli M., Mengali U. (1999) An improved frequency offset estimator for OFDM applications. IEEE Communication Letters 3(3): 75–77

    Article  Google Scholar 

  12. Ren G., Chang Y., Zhang H.-N., Zhang H. (2007) An efficient frequency offset estimation method with a large range for wireless OFDM systems. IEEE Transaction on Vehicular Technology 56(4): 1892–1895

    Article  Google Scholar 

  13. Mody, A. N., & Stüber, G. L. (2001). Synchronization for MIMO-OFDM systems. In Proceedings of IEEE GLOBECOM (pp. 509–513).

  14. Stüber G. L., Barry J. R., Mclaughlin S. W., Li Y., Ingram M. A., Pratt T. G. (2004) Broadband MIMO-OFDM wireless communications. IEEE Proceedings 92(2): 271–294

    Article  Google Scholar 

  15. Liu, H., Wang, X.-D., & Xiong, Z.-X. (2003). Iterative receivers for OFDM coded broadband MIMO fading channels. In Proceedings of IEEE workshop on statistical signal processing (pp. 355–358).

  16. Jiang Y., Minn H., Gao X., You X., Li Y. (2008) Frequency offset estimation and training sequence design for MIMO OFDM. IEEE Transaction on Wireless Communicaton 7(4): 1244–1254

    Article  Google Scholar 

  17. Oh, M.-F., Ma, X., Giannakis, G. B., & Park, D.-J. (2003). Hopping pilots for estimation of frequency-offset and multiantenna channels in MIMO-OFDM. In Proceedings of IEEE GLOBECOM (pp. 1084–1088).

  18. Dai, X., & Zhang, S.-H. (2004). Pilot-assisted carrier frequency offset estimation for MIMO-OFDM systems. In Proceedings of IEEE computer and information technology conference (pp. 681–686).

  19. Saemi A., Meghdadi V., Cances J.-P., Zahabi M. R. (2008) Joint ML time-frequency synchronization and channel estimation algorithm for MIMO-OFDM systems. IET Circuits, Devices and Systems 2(1): 103–111

    Article  Google Scholar 

  20. Park, K.-W., & Cho, Y.-S. (2005). A MIMO-OFDM technique for high-speed mobile channels. IEEE Transaction on Communication (pp. 604–606).

  21. Li J., Conan J., Pierre S. (2007) Mobile terminal location for MIMO communication systems. IEEE Transaction on Antennas and Propagation 55: 2417–2420

    Article  Google Scholar 

  22. Juang R.-T., Lin D.-B., Lin H.-P. (2007) Hybrid SADOA/TDOA mobile positioning for cellular networks. IET Communications 1: 282–287

    Article  Google Scholar 

  23. TIA/US. (1998). The cdma2000 ITU-R RTT candidate submission.

  24. CATT/China. (1998). TD-SCDMA radio transmission technology for IMT-2000.

  25. Wen C.-K., Wang Y.-Y., Chen J.-T. (2005) A low-complexity space-time OFDM multiuser system. IEEE Transaction on Wireless Communication 4: 998–1007

    Article  Google Scholar 

  26. Spencer Q. H., Jeffs B. D., Jensen M. A., Swindlehurst A. L. (2000) Modeling the statistical time and angle of arrival characteristic of an indoor multipath channel. IEEE Journal of Selective Areas Communication 18: 347–360

    Article  Google Scholar 

  27. Golub G. H., Van Loan C. F. (1996) Matrix computations (3rd ed.). Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  28. Wu, K.-H., Fang, W.-H., & Chen, J.-T. (2006). Joint DOA-frequency offset estimation and data detection in uplink MIMO-OFDM networks with SDMA techniques. In Proceedings of IEEE vehicular technology conference-spring (pp. 2977–2981).

  29. Wang, Y.-Y., Chen, J.-T., & Fang, W.-H. (2001). TST-MUSIC for joint DOA-delay estimation. IEEE Transaction Signal Processing, 721–729.

  30. Lin, J.-D., Fang, W.-H., Wang, Y.-Y., & Chen, J.-T. (2006). FSF-MUSIC for joint DOA and frequency estimation and its performance. IEEE Transaction on Signal Processing, 4529–4542.

  31. Lin, C.-H., Fang, W.-H., Wu, K.-H., & Lin, J.-D. (2007). Fast algorithm for joint azimuth and elevation angles, and frequency estimation via hierarchical space-time decomposition. In Proceedings on IEEE international conference. Acoustics, speech and signal processing (pp. 1061–1064).

  32. Schmidt, R. O. (1979). Multiple emitter location and signal parameter estimation. In Proceedings on RADC spectral estimation workshop (pp. 243–258).

  33. Van Trees H. L. (2002) Optimum array processing. Wiley-Interscience, New York

    Book  Google Scholar 

  34. Roy R., Paulraj A., Kailath T. (1986) ESPRIT-A subspace rotational approach to estimation of parameters of cisoids in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-34: 1340–1342

    Article  Google Scholar 

  35. Wang, S.-Y., Huang, C.-C., & Quek, C.-C. (2005). A two-dimensional rake receiver architecture with an FFT-based matched filtering. IEEE transaction on vehicular technology (pp. 224–234).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Hsiung Wu.

Additional information

This work was supported by National Science Council of R.O.C. under contracts NSC 97-2221-E-011-053.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, KH., Fang, WH. & Chen, JT. Antenna-Array-Assisted Frequency Offset Estimation and Data Detection in an Uplink Multiuser MIMO-OFDM Interference Network. Wireless Pers Commun 58, 215–237 (2011). https://doi.org/10.1007/s11277-009-9889-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-009-9889-7

Keywords

Navigation