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Abstract Accurate simulation and analysis of wireless networks are inherently dependent 
on accurate models which are able to provide real-time channel characterization. High-order 
Markov chains are typically used to model errors and losses over wireless channels. However, 
complexity (i.e., the number of states) of a high-order Markov model increases exponentially 
with the memory-length of the underlying channel. In this paper, we present a novel graph­
theoretic methodology that uses Hamiltonian circuits to reduce the complexity of a high-order 
Markov model to a desired state budget. We also demonstrate the implication of unused states 
in complexity reduction of higher order Markov model. Our trace-driven performance eval­
uations for real wireless local area network (WLAN) and wireless sensor network (WSN) 
channels demonstrate that the proposed Hamiltonian Model, while providing orders of mag­
nitude reduction in complexity, renders an accuracy that is comparable to the Markov model 
and better than the existing reduced state models. 
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1 Introduction 

Due to a lack of available infrastructure to perform realistic wireless experiments, system­
level simulations are used to evaluate the performance of emerging wireless protocols and 
services. An accurate model of the wireless channel is an important component of such 
simulation-based performance evaluation. In the past three decades, channel error modeling 
techniques have been used extensively to improve the design of communication channels and 
the protocols that operate on these channels [7,18,19,21]. Using an accurate channel model, 
one can simulate the channel and can gain insights into the channel's underlying behavior: 
More importantly, an accurate and low-complexity channel model can be used to tune critical 
parameters of network protocols and applications at design time and in real-time. Lastly, a 
low-complexity channel model also allows real-time channel characterization and prediction 
which is required by rate adaptive protocols and applications. 

In the channel modeling context, stochastic models have gained significant research atten­
tion [2,3,6, 13]. In particular, high-order Markov channel models have been shown to be quite 
accurate in modeling link layer bit-errors and packet losses [2,11,13,14,20]. Unfortunately, 
the complexity of Markov models increases with their memory length and consequently the 
viability of using Markov models in resource-constrained wireless environment is very lim­
ited. Thus, accurate approximations of high-order Markov channel models are needed for 
wireless environments. 

Many models have been proposed in recent literature to reduce the complexity of high­
order Markov chains [11,14,15,20]. While there exists a clear tradeoff between complexity 
and accuracy (lower the model complexity, lower the accuracy), existing low-complexity 
channel models [16] (with the exception of the bipartite model [20]) reduce the channel 
model's complexity to a fixed level and therefore do not cater for the emerging heteroge": 
neous communication devices; for instance, on a given channel, high-end wireless devices 
(e.g., desktop and laptop computers) can afford higher complexity channel models than low­
end devices (e.g., PDAs and smart phones.) To cater for such device heterogeneity, we need 
channel models that can adapt their complexity to an arbitrary level in accordance with the 
resources available at a wireless device. 

In this paper, we propose a new variable-complexity wireless channel model referred to 
as the Hamiltonian Model (HM). The HM reduces the complexity of high-order Markov 
channel models by identifying and aggregating Hamiltonian circuit present in the states of 
the Markov chain. Given a desired complexity budget in terms ofthe total number of Markov 
states, the proposed model identifies a Hamiltonian circuit in the Markov chain, finds cycles 
of the needed complexity, and then aggregates these cycles into odd and even states based on 
the number of total states present in those cycles. We further analyze the transition probability 
matrices for bit patterns that never occur in the collected traces and are referred to as the 
unused states. We further demonstrate that when the unused state parameter is available, we 
can reduce the complexity associated with higher order Markov channel models. 

The performance of the proposed model is compared with the Bipartite Model (BM) of 
Willig [20] . The pelformance characteristics of both models are evaluated using a compre­
hensive dataset of actual traces collected in two different environments: (i) 802.11 MAC 
layer bit errors at 5.5 Mbps; (ii) 802.15.4 MAC layer bit errors at 250 Kbps. We compare the 
models' accuracies by measuring their closeness to the actual wireless channel traces using 
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an information-theoretic Kullback-Leibler-based divergence measure and by comparing the 
Cumulative Distribution Functions (CDF) of bit errors. Our results demonstrate that HM has 
significantly higher modeling accuracy than BM. 

The rest of this paper is organized as follows. Section 2 describes related work in this 
area. Section 3 provides the background that is required to understand the contribution of 
this paper. Section 4 describes error trace collection on Wireless Sensor and Local Area Net­
works. Section 5 describes the proposed Hamiltonian model. Section 6 outlines performance 
evaluation of the HM model and compares its performance with the BM model. Section 7 
summarizes the key conclusions of this paper. 

2 Related Work 

Some previous studies have proposed methods to reduce the complexity of high-order Mar­
kov models [2,11,20], In Khayam and Radha [11], guidelines were proposed to accurately 
model Markov based wireless .channels and a constant complexity probabilistic model was 
proposed. In Khayam and Radha [10], authors showed empirically that low complexity hier­
archical and hidden Markov models cannot characterize the bit error processes and proposes 
to employ high-order Markov chains for accurate channel characterization. These studies, 
however, resulted in models with fixed, non-scalable complexities. 

Since complexity and accuracy of a model generally exhibit a direct proportionality rela­
tionship, we argue that, in view of the heterogeneity of contemporary wireless devices, a 
model should be able to scale its complexity in accordance with the complexity that can be 
afforded at a wireless device. More specifically, given a complexity budget (for instance, in 
terms of the number of model states,) a scalable channel modeling algorithm should be able 
to produce a channel model to satisfy that budget. We are only aware of two studies ([2] and 
[20]) which approach the wireless channel modeling problem in this way. 

Chen and Rao [2,3] used the lumpability framework to reduce the order of a Markov 
channel model. However, the lumpability conditions place very stringent constraints on the 
transition probabilities of a Markov chain. Tnese constraints are generally not satisfied by 
real-life wireless channel models. Therefore, we do not compare performance of our proposed 
technique with lumped Markov chains. 

Willig [20] proposed a scalable-complexity Bipartite Model for wireless channels. The 
bipartite model uses the notion of bipartite graphs and divides the graph according to its burst 
order based on the binary indicator sequence and then according to burst order Probability 
Mass Function (PMF) is calculated. The PMF fx (x) on a countable sample space s S; R is 
given by 

fx(X) = { Pr(X = x), 
0, 

XES 

x E R\s 

In order to build a model from the traces one needs to choose the numbers of states K 1 
and K2 i.e., total number of odd or even states. Every state is assigned a discrete random 
variable with probability distribution. This random variable takes values on a finite interval of 
the natural numbers based on a specific state which determines the burst length of good and 
bad bits. Based on the burst intervals the transition matrix p is generated for the transitions 
from the good states to the bad states and vice versa. 

Our data analysis on the collected traces revealed generalized probability distributions of 
good and bad-bursts for a Full State Markov (FSM) chain of arbitrary order. The probability 
distributions are derived in terms of FSM chain transition and steady-state probabilities and 
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we noticed that generally 99% of the times the transitions are in either good state (0) or in 
a bad state (1). This observation renders useful insights into important FSM characteristics, 
which helped us to develop guidelines for defining FSM state space part.itions for our pro­
posed Hamiltonian model (HM) which is not used by the BM. The Bipartite model uses 
the notion of a bipartite graph and divides any order of Markov chain into only two states 
namely an odd state and even state and do not separate the good state and the bad state. This 
is a very important property because it is undesirable to merge good and bad states together 
with an odd states or even states. Moreover, the accuracy of BM depends on a selected value 
of complexity. This fundamental flaw further degrades the performance of the BM when 
compared with the proposed HM. 

3 Background and Notation 

In this section, we present brief description of the binary nature of traces and the commonly 
used high-order Markov chain models of wireless channels. 

3.1 Representation of Binary Wireless Traces 

Traces collected over a wireless medium generally represent two states. One state is the good 
state and the other state is the bad state or the lossy state. Hence we can characterize wireless 
traces generally as a binary time series {x(n) }~=I ' where x(n) E {O, I} and I is the length of 
the error trace. 

Without loss of generality, throughout this paper we use zero to represent an error-free 
bit and one for a bit in error. The sequence of these bits forms alternating bursts of zeros 
and ones. If the burst consists of number of zeros then we refer to it as a good burst and if 
the burst consists of ones then we call it a bad burst. The trace can hence be represented as 
pairs of good and bad bursts: (NI, G I) , (N2, G2) , ... , (Nn, Gn ) ,where N n and Gn repre­
sent the length of the nth good and the bad bursts, respectively [17]. Many channel modeling 
studies have showed that this binary representation is suitable for representing channel traces 
[2,9,10,15,20]. 

3.2 Kth Order Markov Chains 

A Markov chain of memory K is a discrete time random process whose probabilities for 
going to future states at a given present state are independent of the past states. For a memory 
length of K, the Markov chain comprises of 2K possible combinations of K consecutive bits. 
If we have a set of states K which consists of S = {SI, S2, S3, ... , Sn}, then the process 
starts in one of these states and moves successively from one state to another. If we define 
Si as a current state then for moving to next state S j, the probability will be denoted by Pi) . 
The probabilities are called transition probabilities and are computed by sliding bit by bit a 
K bit memory window over the data [5,8]. The sum of all transitions from a Markov state 
must sum to one, for any state S we have P(2S+I) mod 2K = 1 - P(2S) mod 2K. For calculating 
the transition probabilities, we fixed the order of Markov chain and performed the above 
operation on real 802.15.4 and 802.11 b traces to generate the probability transition matrix. 
The probability transition matrix for a 3-rd order (memory length=3) Markov chain is shown 
below in Table 1. 
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Table I Transition probability matrix for 3-RD order Markov chain 

0 2 3 4 5 6 7 

0 0.98752 0.01248 

1 0.44197 0.55803 

2 0.5948 0.4052 

3 0.56808 0.43192 

4 0.98644 0.01356 

5 0.64005 0.35995 

6 0.93954 0.06046 

7 0.77115 0.22885 

P •. 4 

Fig.l A 3-rd order (memory length = 3) Markov chain 

In this paper, Markov chain corresponding to even (odd) decimal numbers is referred as 
even (odd) states. Using the above notation, an example 3-rd order Markov chain is shown in 
Fig. 1; only transitions to even states are shown. If the Markov chain is in an even state, the last 
received bit (i.e., the least significant bit position in the memory window) must be error-free. 
Similarly, a Markov chain in the odd states implies that the last bit was corrupted. Due to the 
binary nature of the underlying wireless bit-error process, each Markov chain state can transit 
to only two other states [8,12]. This is due to the Markov chain definition in which the mem­
ory-window at each time instance is left-shifted by one bit and a one or a zero bit is added to 
the least-significant bit position. Thus from state S, a Markov chain can transit either to even 
state (2S) mod 2K or to odd state (2S + 1) mod 2K. Since the sum of all transitions from a 
Markov state must sum to one, for any state S we have P(2S+1) mod 2K = 1 - P(2S) mod 2K. It 
should also be emphasized that once a corrupted bit is received, a K -th order Markov chain 
will return to state 0 (i.e., the no error state) only from state 2 K - I after K transitions; see in 
Fig. 1 that at state 23- 1 = 4, the Markov chain wraps around to state O. 

4 Data Collection 

To perform realistic performance evaluation over operational channels, we collected a com­
prehensive dataset of wireless error traces over two different channels: (1) an 802.15.4 WSN 
channel, and (2) an 802.11 b WLAN channel. All traces were collected at the MAC layer 
after physical layer processing; MAC layer channels are referred to as residual channels in 
prior literature [6,11]. This section describes the data collection and some preliminary trace 
statistics. 
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Room 3 

Ro.om 1 (Base station) 

Fig.2 Setup for 802.15.4 bit error traces 

4.1 802.15.4 Data Collection 

We used Crossbow's Micaz motes to collect residual bit-error traces over wireless sensor 
networks . These motes operate on the ISM frequency band of 2.4 GHz and support a peak 
data rate of 250 Kbps. Sensor motes were running the open-source TinyOS operating system. 
We modified the source code of TinyOS applications to disable the MAC layer checksum 
feature at the receiver. Hence, corrupted packets were not dropped in a receiver's kernel, and 
were passed to a data logging application. The application logged all packets on an attached 
computer through the serial port. We collected the traces at four different locations or setups. 
These setups are named according to their geographical location as shown in Fig. 2. The 
light-shaded mote in Fig. 2 is the base station which received and logged data, while the 
remaining motes are sending motes which transmitted packets with predefined contents to 
the base station. In each experiment, one sender transmitted unicast data to the base station 
and the other senders were inactive; i.e., in each trace collection, there was no channel conten­
tion and collisions as there was only a single sender and a single receiver. While performing 
experiments, motes were kept stationary. In order to collect traces with varying error behav­
iors, the distance between the motes and the base station was varied from 5 to 12 m. The 
senders transmitted 20-byte fixed-sized frames at a rate of 10 frames per second. We first 
performed the experiments by having a direct line of sight (LoS) between the sender and the 
base station but the error rates observed in those experiments were too low to warrant further 
analysis. Therefore, throughout this paper, we focus on non-LoS traces. 

The average number of frames per trace was approximately 31,000 frames. Thus, the 
average length of each trace was approximately 5 million bits [6]. For evaluation of HM 
and BM we used five traces for each setup and a total of 20 traces for all setups. While we 
collected more actual wireless sensor network traces but the trends observed in 20 traces (5 
per setup) are representative of the trends that we observed in other traces. More standardized 
approaches for data collection can be found in [1). 

4.2 802.11 Data Collection 

For 802.11 b traces, we repeated the same process as the 802.15.4 traces using the topology 
shown in Fig. 3 and AP (access point) was operating in Distributed Coordination Func­
tion (DCF) mode and three wireless stations communicating in the infrastructure network 
configuration. One of the stations was operating as the server and the remaining two as mul­
ticast clients. All wireless stations were Linux boxes using Dlink wireless cards with Prism2 
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Fig. 3 Setup for 802.11 b bit error traces 

chipset device drivers. The server was stationary and transmitted a continuous stream of 
predetermined patterns to the multicast clients. Traces were generated for each bitrates at 
different stationary client positions with and without LoS. It was observed that, with clear 
LoS, the error rate at all bitrates was extremely low. Such excellent performance deemed fur­
ther LoS study inconsequential. Hence, both clients were positioned in a separate room across 
two walls in order to simulate a more realistic business/classroomlhome-network wireless 
setup and forced to transmit non Line of Sight frames of 512-bytes at a physical layer data 
rate of 5.5 Mbps. The average length of each trace was approximately 6 million bits . We 
collected 3 traces at different locations for 5.5 Mbps. 

4.3 Kth Order Markov Chain Statistics 

In order to accurately and efficiently represent transition probability data and to reduce that 
complexity associated with higher order Markov chains we investigated the transition prob­
'ability matrices for the 802.15.4 WSN and 802.11b WLAN collected traces and noticed the 
bit patterns that never occur in transition probability matrices and are referred to as unused 
states. In other words, such states result in all-zero columns of the transiti,on probability 
matrix. An all-zero column implies that the probability of jumping to that state from any 
state is zero which is observed because that state was not present in the training data. The 
number of unused states is larger for the traces with lower BER because all the error states 
are not observed in a finite length trace. Conversely, as the error rate increases, the number of 
observing unused states decreases proportionally. We noticed many unused states in 802.15.4 
WSN traces and the number of unused states grew as the order of Markov chain [9] . The total 
number of unused states per setup for 802.15.4 WSN traces is shown in Table 2. It shows 
that the number of unused states increase with the increase in the order of Markov chain and 
maximum number of unused states are observed at K = 9. The unused states in Room 3 are 
fewer as compared with other setups since the sender and receiver in Room 3 were separated 
by a concrete wall. Therefore, this setup has a high BER when compared with other setups. 
We witnessed more unused states in case of Upper floor in which sender and receiver were 
at the farthest distance from each other. However in our 802.11 b WLAN traces we noticed 
that there is no unused state up to K = 9 i.e., the order by which we tested our model for 
complexity reduction. 

4.4 Trace Bit Error Rate (BER) Statistics 

Table 3 shows the average bit error rates of 802.15.4 and 802.11 b original traces, respectively. 
It, can be seen that highest bit error rate was observed for Room 3 as in this case the sender 
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Table 2 Total number of unused states per setup 

Setup Number of states 

16 32 64 128 256 512 

Room2 0 0 6 41 209 772 

Room3 0 0 5 36 138 425 

Stairs 0 0 0 13 129 595 

Upper floor 0 4 46 205 610 1,512 

Table 3 Average bit error rate 
Setup BER 

of actual traces 

802.15.4 

Room2 0.00085689 

Room3 0.01519663 

Stairs 0.00737452 

Upper floor 0.00735198 

802.llb 

Location 1,2,3 0.003067968 

and receiver were separated by a concrete wall which was in between them. Room 2 has the 
lowest bit error rate as in this case the sender and receiver were at the closest distance from 
each other and there was a glass window in between them. The bit error rate of Upper floor 
and Stairs are similar because of being in the same vicinity but the distance of Upper floor 
was more as compared to Stairs setup. In case of 802.11 b where the receiver's were kept 
stationary, the average bit error rate observed at different locations was 0.003. 

5 The Hamiltonian Wireless Channel Model 

Let a K -th order Markov chain be represented as a K vertex connected digraph G = (V, E) 
with positive edge weights. Markov chain of any order forms a connected graph as long as 
both state transitions probability in each Markov state are greater than zero. We observed 
that Markov chains exhibit many interesting graph-theoretic properties which can be used 
to reduce the complexity associated with higher order Markov chains and those properties 
can be used to develop a scalable model. A graph in which we can traverse each vertex or 
node exactly once forms a Hamiltonian circuit. A Hamiltonian circuit can be identified in 
Markov chains of any arbitrary order. By using this property, we can further arrange the 
states according to the nodes traversed, which gives an easy method for aggregating states 
that comprise the Hamiltonian circuit. Since a cycle of arbitrary length can be identified in 
the Markov digraph, the states of the circuit can be aggregated to a desired state budget. 
These characteristics are a consequence of the Markov chain construction and are therefore 
present at all orders of the Markov chains. Moreover, the Hamiltonian circuit formed in the 
Markov digraph clearly identifies the good and bad nodes which remain separated during 
state aggregation. This is a very important property because it is generally undesirable to 
merge good (even) and bad (odd) states together [20]. After Hamiltonian state aggregation, 
the merged states probabilities are aggregated and normalized into one aggregate state of the 
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(a) 

(b) 

(c) 

(d) 

Fig. 4 An example of complexity reduction using the Hamiltonian Model. a Markov chain of order K = 4; 
b Hamiltonian circuit; c Hamiltonian circuit arranged by vertices traversed; d Hamiltonian circuit reduced to 
K =3 

low-complexity model. This graph-theoretic realization helps us in reducing the complexity 
in a finite time and in a simple and easy manner. In the following discussion, we provide an 
example of applying the proposed Hamiltonian Model based state aggregation on a Markov 
chain of order K = 4. 

A Markov chain of order K = 4 is shown in Fig. 4a. If we start from state zero and start 
traversing all the other vertices, the order of traversed vertices in the consequent Hamiltonian 
circuit will be: 0-1-3-7-15-14-13-11-6-12-9-2-5-10-4-8-0. This is depicted with dotted line 
or edges in Fig. 4b. After finding a Hamiltonian cycle we observed that there are n cycles 
in the graph. Based on the cycles still left in the graph we applied our algorithm to work in 
such a way to find a cycle exactly aggregating the graph into K = 3 states. This procedure 
is shown in Fig. 4c. We first found a cycle cons isting of 5 vertices (7, 5, 14, 13, 11,) and then 
again we found another edge coming from vertex 5 towards vertex 11 which was already 
merged. Hence, we looked for cycles consisting of te,n nodes and then we separated the cycle 
into odd and consecutive even nodes. 

Figure 4d shows the final transformation fr,om K = 4 to K = 3. We then normalized the 
probabilities of the states aggregated in odd and even parts. We first compressed our model 
from 29 = 512 to 28 = 256 and then to 27 = 128 and so on up to 23 = 8. We applied 
the algorithm on the graph as depicted in the figures and at each state we generated artificial 
traces generated by our model. It is also possible to find the Hamiltonian circuit by traversing 
vertices different than the traversed vertices shown in Fig. 4. For that the model remains the 
same and is still applicable in reducing the needed complexity. 

The HM does not merge FSM states 0, 1 and 2K - 1 and keeps them in a separate pattition, 
while grouping all the remaining FSM states into two partitions namely odd states and even 



840 

states. The notion of separating the 2K -I state comes from the wrapping of Markov chain 
from state 2K -I after K transitions to zero state as shown in Fig. 1. The possibilities of 
finding a Hamiltonian cycle increases with an increase in the order of Markov chain. In order 
to find a Hamiltonian cycle, Depth First Search (DFS) is used to compute Hamiltonian cycle 
and the big-O complexity of finding a Hamiltonian cycle is O(max{V, E}). The pseudo code 
of the algorithm is given below. 

Algorithm: A systematic way to reduce the complexity of a K -th order Markov chain 
using Hamiltonian Circuit. 

Input: Markov chains of any arbitrary order; 
Part 1: Generate Hamiltonian Circuit 

1. Let G be the Markov chain graph with a set of Vertices (states) denoted by V = 
{VI, V2, V3, .. . , Vn }. Select VI as starting vertex and add VI to P which is defined 
to be the set of visited vertices in the graph. 

2. On each traversal through the graph: 

a. If Vi is already not visited (does not exist in P) then, add Vi to P. 
b. If Vi is already visited and leads towards the dead end then visit the other child 

of the last parent node and subtract the visited vertex from P and continue adding 
unvisited vertices to P. 

3. If P forms a Hamiltonian cycle then go to step 4, if not then iterate step 2 until all 
vertices are traversed to the order of Markov chain and Markov chain wraps around to 
state zero or P forms a Hamiltonian cycle. 

Part II: Reduce the K - th order Hamiltonian Circuit to (K - 1)-th order 

4. Let P be the graph with a set of Vertices (states) denoted by a vertex set of P. 

5. Arrange the vertices according to the traversed order in P . 
6. Reduce the Markov chain to its lower order (K - 1) by: 

a. Separate 0,1, and 2K - 1 states and make them independent states. 
b. Merge and classify all other states into two states (odd and even). 

7. Iterate step 6 until the markov chain does not wrap around to form a new graph H. 

The problem of finding a Hamiltonian cycle is NP-complete. However, to determine 
whether a given order of Markov chain has a Hamiltonian cycle undertakes a non-exhaustive 
search method as each Markov state transits either to an even state (2S) mod 2K or an odd 
state (2S + 1) mod 2K (see Fig. 1). These special properties make the process of finding a 
Hamiltonian cycle easier in a K -th order Markov chain when compared with general graphs. 

6 Performance Evaluation 

In this section, we use the error traces to compare the performance of the Hamiltonian Model 
with the Bipartite Model using Bit Error Rate (BER), Kullback-Leibler Divergence (KLD) 
and bit error distributions. 

6.1 Bit Error Rate (BER) 

We calculated the BER of 802.15.4 and 802.11 b synthetic traces generated by Hamiltonian 
Model and the Bipartite Model. Table 4 shows the Average BER per setup of Hamiltonian 
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Table 4 Average bit error rate of synthetic traces 

Model Setup Number of states 

64 128 256 

Hamiltonain_802.15.4 Room2 0.004119 0.001383 0.000416 

Room3 0.016309 0.016735 0.021816 

Stairs 0.021501 0.009547 0.011524 

Upper floor 0.01853 0.008242 0.014039 

Hamiltonian_802. II b Location 1,2,3 0.007559 0.002649 0.005284 

Bipartite_802.15.4 Room2 0.0259419 0.0388292 0.0540207 

Room3 0.0203247 0.0324104 0.0725722 

Stairs 0.0066553 0.0099122 0.0453318 

Upper floor 0.0373605 0.0800648 0.1279515 

Bipartite_802.11 b Location 1,2,3 0.038968 0.03524 0.030718 

Model traces parameterized from actual traces atK = 6, K = 7 and K = 8. It also shows 
the BER of Bipartite Model for varying number of K -states. Comparing with Table 3, it can 
be observed that BER of Hamiltonian Model (HM) traces are closer to the actual traces' BER 
than the Bipartite Model (BM). Overall, the inaccuracy in BER estimates shows the opposite 
trends in HM and BM. For the HM, the inaccuracy decreases with an increase in the number 
of states except for Room 3 which has a larger number of unused states when compared with 
other setups. The BM, on the other hand, incurs more inaccuracy for higher number of states. 
Thus for the BM introducing more state does not necessarily increase the accuraGY of the 
model. 

Typically, an increase in the complexity of a model (e.g., with an increase in the order of a 
Markov chain) causes the accuracy of the model to improve. However, for the HM model we 
did not observe this proportionality trend between complexity and accuracy. On the contrary, 
after empirically evaluating the HM model's accuracy for varying state merging orders, we 
observed that a particular HM order provides better accuracy than orders above and below 
it when unused states are not used. When the unused state parameter is available, we can 
reduce the complexity associated with the model by tuning the unused state parameter. This 
is also shown in Table 5 for K = 6, K = 7 and K = 8. For generating HM synthetic traces 
we tuned our model in such a way that when unused states occur in transition probability 
matrix the model should always jump to a good state. The notion of jumping to good state 
when zero columns occur in transition probability matrix is taken from the overall behavior 
of the WSN traces which shows that 99% of the times the state transitions are in good state. 
Hence, when compared with Table 3, the model shows very similar bit error rate for varying 
number of K -states in case of 802.15.4 WSN traces and is shown in Table 5. 

While the BER estimates give us an overall picture of the accuracy of a model, for more 
elaborate performance comparison, we need to compare the burst distributions of the HM 

. and BM. To this end, we compare the good- and bad-bursts' distributions of the two models 
in the next two sections. 

6.2 Kullback-Leibler Divergence (KLD) of Good- and Bad-Bursts 

Entropy is a measure of the average number of bits required to represent all outcomes of 
a probability distribution . The Kullback-Leibler divergence quantifies the difference in the 
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Table 5 Average bit error rate of synthetic traces with unused states used 

Model Setup Number of states 

64 128 256 

Hamiltonain_802.15.4 Room2 0.000898 0.000841 0.000835 

Room3 0.01614 0.015131 0.015937 

Stairs 0.007777 0.007411 0.006951 

Upper floor 0.00782 0.007335 0.007236 

entropies of two probability distributions [4]. The KLD divergence quanti fies the source­
coding-like overhead incurred by employing a model instead of the actual source. For two 
probabilities distributions p and q defined over a common alphabet 1Jl, the KL divergence is 
defined as: 

~ p(x) 
D(p ll q) = L,.p(x)log2-· 

q(x) 
x 

The Kullback-Leibler Divergence (KLD) is not a true distance metric and has the following 
properties: 

(a) Non-negativity, D (p Ilq) 2: O. 
(b) Non- symmetry, D(pllq) i- D(q ll p), 
(c) Zero if, D(p ll q) = 0 {} P = q. 

The KLD has shortcoming of non symmetry and it requires two distributions to be con­
tinuous with respect to each other. Therefore, instead of Kullback-Leibler we used the KL 
based Resistive (R) divergence measure defined as 

111 
R == D(p II q) + -D-(q- II- (-p) . 

As with the KL measure, small values of R represent more similarity between p and q. 
Therefore, we employ the KL-based R divergence measure for model verification on 802.15.4 
and 802.11 b wireless traces. For performance evaluation reference, p (x) and q (x) respec­
tively represent the burst distributi.ons from an actual trace and a trace artificiall y generated 
by a model, where xis a good-bursts random variable. Similarly, R(p(y), q(y» is also com­
puted for the bad-bursts random variable y. We used the KL based Resistor-Average (R) 
divergence measure defined in Cover and Thomas [4]. For accuracy evaluation of HM and 
BM, we compare the R divergence of good- and bad-bursts distributions derived from actual 
traces and the models. The R divergence observed in Figs. 5, 6, 7, and 8 at different states 
demonstrate that the HM shows results demonstrating very small R values for good bursts 
and outperforms the BM. The results for R divergence of 802.15.4 HM traces and BM are 
demonstrated in Fig. 5. It shows consistent performance with increasing order of K and ren­
ders good behavior with increasing state compression. Figure 6 shows the R divergence of 
bad-bursts for 802.15.4 traces generated from HM and BM. For bad bursts, it demonstrates 
very small R values elaborating similarity with actual traces when compared with BM and 
showing lower R divergence at K = 5 because of occurrence of unused states at K = 6. The 
increase in the order of Markov chain causes occurrence of more unused states and overall 
in our 802.15.4 WSN traces these states start at K = 6 which is also shown in Table 2. It 
can be clearly observed that at increasing order of K the HM has very small R divergence 
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in case of bad bursts. On the other hand, the good-bursts and bad-bursts distributions of the 
BM diverge quite significantly from actual traces. R divergences of good and bad bursts for 
the 802.11 b traces are shown in Figs. 7 and 8. It can be clearly observed that at increasing 
order of K the HM has very small R divergence in the good bursts case. On the other hand, 
the good-bursts distributions of the BM diverge quite significantly from actual traces. For 
bad-bursts, the R divergence of the HM is slightly higher than the BM at K = 9.The slight 
variations in bad burst R divergence values can be removed by averaging over more traces. 
Nevertheless, both models are able to capture the bad-bursts behavior quite accurately. 

6.3 Cumulative Distribution Function (CDF) of Good and Bad Bursts 

We derive CDFs of good and bad bursts from actual network traces and traces artificially 
synthesized by our model and the BM. For evaluation we took one trace per setup from each 
of the model at different memory length. The cumulative distribution function for good and 
bad burst length at K = 5 and K = 8 is shown in Figs. 9, 10, 11 and 12 respectively. The 
CDF of the HM clearly follows the CDF of actual 802.15.4 traces for both the good and bad 
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burst distributions. The CDP for K = 8 is also plotted for good and bad burst lengths and is 
shown in Pigs. 13 and 14. The CDP of the HM clearly follows the CDP of actual 802. lIb 
bit error traces in both the good and bad burst length distributions, respectively. While the 
BM model captures the bad burst CDP reasonably accurately, the HM outperforms BM in 
capturing bad bursts as shown in Pigs. 10 and 12, respectively. 

7 Conclusions 

In this paper, we presented a novel algorithm to reduce the complexity of high-order Markov 
channel models to a desired state budget. We performed state aggregation by identifying 
Hamiltonian Circuits in the Markov digraph. States in the circuit were then aggregated to a 
given and arbitrary state budget. We demonstrated that the HM provides orders of magnitude 
reduction in complexity and renders very accurate performance when compared with BM. 
We showed that by using the unused state parameter we can reduce the model complexity 
and can have results very similar to actual traces at varying number of K -states. When this 
parameter is not available, the model complexity renders behavior similar to actual traces at 
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Fig. 12 Bad burst length 
distribution for 802.15.4 bit error 
traces at K = 8 
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particular order of K -states. However, the HM model still performs better than the Bipartite 
model in capturing good and bad bursts . 
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