Skip to main content
Log in

Cellular Downlink Performance with Covariance-CSIT-Based MIMO Precoding

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The nature of the trade-off between reduced overhead of channel state information (CSI) and resultant performance losses influences the design of frequency-division duplexed practical cellular systems. One candidate for CSI feedback reduction is the use of covariance-matrix-based CSI at the transmitter (CSIT) in conjunction with linear precoding techniques. This paper analyzes the performance of such systems in the downlink for both single-user (SU-) and multiuser (MU-) multiple-input multiple output (MIMO) in comparison to those using optimal perfect-instantaneous-CSIT-based precoding. In addition, the effectiveness of techniques enforcing frequency domain diversity versus those based on the maximal ergodic channel capacity criterion is evaluated. A novel precoding scheme using covariance matrix information that supports spatial multiplexing in both SU- and MU-MIMO is proposed. Simulation results show that the spectral efficiency loss from covariance-CSIT-based techniques from those utilizing perfect, instantaneous CSIT is shown to be about 1 dB in a highly correlated urban channel environment for both SU- and MU-MIMO, whereas for microcell environments it is between 3 and 4 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldsmith A., Jafar S. A., Jindal N., Vishwanath S. (2003) Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications 21(5): 684–702

    Article  Google Scholar 

  2. Gesbert D., Kountouris M., Heath R., Chae C., Salver T. (2007) Shifting the MIMO paradigm. IEEE Signal Processing Magazine 24(5): 36–46

    Article  Google Scholar 

  3. Narula A., Lopez M., Trott M., Wornell G. (1998) Efficient use of side information in multiple antenna data transmission over fading channels. IEEE Journal on Selected Areas in Communication 16(8): 1423–1436

    Article  Google Scholar 

  4. Love D., Heath R., Strohmer T. (2003) Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Transactions on Information Theory 29(10): 2735–2747

    Article  Google Scholar 

  5. Love D., Heath R., Santipach W., Honig M. (2004) What is the value of limited feedback for MIMO channels?. IEEE Communications Magazine 42(10): 49–54

    Article  Google Scholar 

  6. Wang, C., & Murch, R. D. (2007). MU-MIMO decomposition transmission with limited feedback. In Proceedings of the wireless communications and networking conference (pp. 1108–1113).

  7. Jindal, N. (2005). MIMO broadcast channels with finite rate feedback. In Proceedings of the global telecommunications conference (Vol. 3, pp. 1520–1524).

  8. Yoo T., Goldsmith A. (2006) On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE Journal on Selected Areas in Communication 24(3): 528–541

    Article  Google Scholar 

  9. Philips Electronics. (2006, October). Comparison between MU-MIMO codebook-based channel reporting techniques for LTE downlink. In 3GPP TSG RAN WG1 meeting 46bis, contribution R1-062483.

  10. Motorola. (2009, March). On UE feedback to support LTE-A MU-MIMO and CoMP operations. In 3GPP TSG RAN WG1 Meeting 56bis, contribution R1-091342.

  11. Motorola. (2009, October). DL MIMO with spatial covariance feedback, overview and signaling. In 3GPP TSG RAN WG1 meeting 58bis, contribution R1-093958.

  12. Bahrami H., Le-Ngoc T. (2006) Precoder design based on correlation matrices for MIMO systems. IEEE Transactions on Wireless Communications 5(12): 3579–3587

    Article  Google Scholar 

  13. Hong Z., Liu K., Heath R., Sayeed A. (2003) Spatial multiplexing in correlated fading via the virtual channel representation. IEEE Journal on Selected Areas in Communication 21(6): 856–866

    Article  Google Scholar 

  14. Clerckx B., Vandendorpe L., Vanhoenacker-Janvier D., Oestges C. (2004) Optimization of nonlinear signal constellations for real-world MIMO channels. IEEE Transactions on Signal Processing 52(4): 894–902

    Article  MathSciNet  Google Scholar 

  15. Oestges C., Clerckx B. (2007) MIMO wireless communications: From real-world propagation to space-time code design. Academic Press, Oxford, UK

    Google Scholar 

  16. Akhtar J., Gesbert D. (2005) Spatial multiplexing over correlated MIMO channels with a closed-form precoder. IEEE Transactions on Wireless Communications 4(5): 2400–2409

    Article  Google Scholar 

  17. Döttling, M. (Ed.) (2005, February). Assessment of advanced beamforming and MIMO technologies. WINNER Project, IST-2003-507581 WINNER D2.7 v1.1.

  18. Zhou S., Giannakis G. (2003) Optimal transmitter eigen-beamforming and space-time block coding based on channel correlations. IEEE Transactions on Information Theory 49(7): 1673–1690

    Article  MathSciNet  Google Scholar 

  19. Motorola. (2009, August). Comparison of PMI-based and SCF-based MU-MIMO. In 3GPP TSG RAN WG1 Meeting 58, contribution R1-093421.

  20. Huawei Technologies. (2009, May). Adaptive codebook designs for DL MIMO. In 3GPP TSG RAN WG1 meeting 57, contribution R1-091820.

  21. Marvell Technology Group. (2009, June). Feedback methods for exploiting channel correlation in LTE-A DL. In 3GPP TSG RAN WG1 meeting 57bis, contribution R1-092395.

  22. Vu M., Paulraj A. (2007) MIMO wireless linear precoding. IEEE Signal Processing Magazine 24(5): 684–702

    Article  Google Scholar 

  23. Jorsweick E., Boche H. (2004) Channel capacity and capacity-range of beamforming in MIMO wireless systems under correlated fading with covariance feedback. IEEE Transactions on Wireless Communications 3(5): 1543–1553

    Article  Google Scholar 

  24. Phan K. T., Vorobyov S., Tellambura C. (2009) Precoder design for space-time coded systems over correlated Rayleigh fading channels using convex optimization. IEEE Transactions on Signal Processing 57(2): 814–819

    Article  MathSciNet  Google Scholar 

  25. Sesia, S., Toufik, I., Baker, M. (eds) (2009) LTE—The UMTS long term evolution. Wiley, Chichester, West Sussex, UK

    Google Scholar 

  26. Tan J., Stüber G. (2004) Multicarrier delay diversity modulation for MIMO systems. IEEE Transactions on Wireless Communications 3(9): 1756–1762

    Article  Google Scholar 

  27. Bauch G., Malik J. S. (2006) Cyclic delay diversity with bit-interleaved coded modulation in orthogonal frequency division multiple access. IEEE Transactions on Wireless Communications 5(8): 2092–2100

    Article  Google Scholar 

  28. Abeta, S. (Ed.) (2009, September). Evolved universal terrestrial radio access (E-UTRA); Physical channels and modulation. 3GPP TS 36.211 v8.8.0.

  29. Chen H., Schober R. (2009) Cyclic space-frequency filtering for BICM-OFDM systems with multiple co-located or distributed transmit antennas. IEEE Transactions on Wireless Communications 8(1): 336–346

    Article  Google Scholar 

  30. Spencer Q. H., Swindlehurst A. L, Haardt M. (2004) Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Transactions on Signal Processing 52(2): 461–471

    Article  MathSciNet  Google Scholar 

  31. Spencer Q. H., Peel C. B., Swindlehurst A. L., Haardt M. (2004) An introduction to the multi-user MIMO downlink. IEEE Communications Magazine 42(10): 60–67

    Article  Google Scholar 

  32. Costa M. (1983) Writing on dirty paper. IEEE Transactions on Information Theory 29(3): 439–441

    Article  MATH  Google Scholar 

  33. Tsoulos, G. (eds) (2006) MIMO system technology for wireless communications. Taylor & Francis, Boca Raton, USA

    Google Scholar 

  34. Brueninghaus, K., Astely, D., Salzer, T., et al. (2005). Link performance models for system level simulations of broadband radio systems. In Proceedings of the personal, indoor and mobile radio communications conference (Vol. 4, pp. 2306–2311).

  35. Srinivasan, R. (Ed.) (2009, January). IEEE 802.16m evaluation methodology document (EMD), IEEE 802.16 TGm Standard Core Documents.

  36. Irmer, R., Döttling, M., Redana, S., et al. (2007, November). Final CF “Wide Area” description for integration into overall system concept and assessment of key technologies. WINNER II Project, IST-4-0277567 WINNER II D6.13.10 v1.0.

  37. Salo, J., Del Galdo, G., Salmi, J., Kyösti, P., Milojevic, M., Laselva, D., et al. (2005). MATLAB implementation of the 3GPP spatial channel model (3GPP TR 25.996). Online code. http://www.tkk.fi/Units/Radio/scm/. Accessed March 1, 2009.

  38. Peel C., Hochwald B., Swindlehurst A. (2005) A vector-perturbation technique for near-capacity multiantenna multiuser communication—part I: Channel inversion and regularization. IEEE Transactions on Communications 53(1): 195–202

    Article  Google Scholar 

  39. Spencer Q. H., Swindlehurst A. (2004) A hybrid approach to spatial multiplexing in multiuser MIMO downlinks. EURASIP Journal on Wireless Communications and Networking 2: 236–247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, K., Derham, T. & Coupé, P. Cellular Downlink Performance with Covariance-CSIT-Based MIMO Precoding. Wireless Pers Commun 63, 415–430 (2012). https://doi.org/10.1007/s11277-010-0140-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-0140-3

Keywords

Navigation