Skip to main content

Advertisement

Log in

Up-Down Links Dualpath Greedy Routing Protocol for Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Greedy geographic routing is attractive in wireless sensor networks because of its efficiency and scalability. This paper presents an up-down links dualpath greedy routing (UDLDGR) protocol for wireless sensor networks. The routing protocol not only reserves the features of greedy forwarding algorithm, which is simple, efficient, but also uses different relay nodes to serve as routing nodes for up and down routing paths, makes the energy consumption more balanced. The greatest advantage of UDLDGR is it trades off only small cost for the source node to obtain two different transmission paths information. The multipath strengthens the network reliability, such as load balancing and robustness to failures. Our simulation results show that UDLDGR can improve system lifetime by 20–100% compared to single path approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matthias, K., Jan, B., Andreas, M., Roman, L., & Lothar, T. (2009). Learning from sensor network data. In Proceedings of SenSys ‘09 (pp. 383–384). New York, USA: ACM.

  2. Camtepe S., Yener B. (2007) Combinatorial design of key distribution mechanisms for wireless sensor networks. IEEE/ACM Transactions on Networking 15(2): 346–358

    Article  Google Scholar 

  3. Esler, M., Hightower, J., Anderson, T., & Borriello, G. (2000). Next century challenges: Data-centric networking for invisible computing: The portolano project at the university of washington. In Proceeding of Mobicom’00 (pp. 256–262). Seattle, Washington, United States: ACM.

  4. Al-Karaki J. N., Kamal A. E. (2004) Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications 11(6): 6–28

    Article  Google Scholar 

  5. Takagi H., Kleinrock L. (1984) Optimal transmission ranges for randomly distributed packet radio terminals. IEEE Transactions on Communications 32(3): 246–257

    Article  Google Scholar 

  6. Amitava C. (2010) A fletcher–reeves conjugate gradient neural-network-based localization algorithm for wireless sensor networks. IEEE Transactions on Vehicular Technology 59(2): 823–830

    Article  Google Scholar 

  7. Finn, G. G. (1987). Routing and addressing problems in large metropolitan-scale internetworks. University of Southern California, ISI/RR-87-180.

  8. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of sixth international conference mobicom’00 (pp. 243–254). San Antonio, Texas, USA: IEEE.

  9. Su X., Chan S., Gang P. (2009) Auction in multi-path multi-hop routing. IEEE Communication Letter 13(2): 154–156

    Article  Google Scholar 

  10. Deepak, G., Ramesh, G., Scott, S., & Deborah, E. (2001). Highly-resilient, energy-efficient multipath routing in wireless sensor networks. In Proceedings of the MobiHOC’01 (pp. 251–254). Long Beach, CA, USA: ACM.

  11. Jain R., Puri A., Sengupta R. (2001) Geographical routing using partial information for wireless ad hoc networks. IEEE Personal Communications 8(1): 48–57

    Article  Google Scholar 

  12. Frey H. (2004) Scalable geographic routing algorithms for wireless ad hoc networks. IEEE Network 18(4): 18–22

    Article  Google Scholar 

  13. Melodia, T., Pompili, D., & Akyildiz, I. F. (2004). Optimal local topology knowledge for energy efficient geographical routing in sensor networks. In Proceedings of INFOCOM’04 (pp. 1705–1716). GA, Atlanta, USA: IEEE.

  14. Yu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy aware routing: A recursive data dissemination protocol for wireless sensor networks. IT Technical Report UCLA/CSD-TR-01-0023, Computer Science Department, UCLA.

  15. Julio, C. N., & Tomasz, I. (1997). GeoCast—geographic addressing and routing. In Proceedings of Mobicom’97 (pp. 66–76). Budapest, Hungary: ACM/IEEE.

  16. Larry H., Omid B., Evan H. (2000) Cartesian routing. Computer Networks 34(3): 455–466

    Article  Google Scholar 

  17. Chen D., Varshney P. (2007) A survey of void handling techniques for geographic routing in wireless networks. Communications Surveys and Tutorials, IEEE 9(1): 50–67

    Article  Google Scholar 

  18. Luminita M., Pierre L., Sotiris N., Jose R. (2008) Path quality detection algorithms for near optimal geographic routing in sensor networks with obstacles. Wireless Communications and Mobile Computing, 10(5): 1–13

    Google Scholar 

  19. Kuhn, F., Wattenhofer R., & Zhang, Y. et al. (2003). Geometric ad hoc routing: Of theory and practice. In Proceedings of PODC’03 (pp. 63–72). Massachusetts, Boston, England: ACM.

  20. Datta, S., Stojmenovic, I., & Wu, J. (2001). Internal node and shortcut based routing with guaranteed delivery in wireless networks. In Proceeding of ICDCSW ‘01 (pp. 461–466). Phoenix (Mesa), Arizona, USA: IEEE.

  21. Kemal A., Mohamed Y. (2005) A survey on routing protocols for wireless sensor networks. Ad Hoc Networks 3(3): 325–349

    Article  Google Scholar 

  22. Boukerche, A., Cheng, X. Z., & Linus, J. (2003). Energy-aware data-centric routing in microsensor networks. In Proceedings of the MSWiM’03 (pp. 42–49). San Diego, CA, USA: ACM.

  23. Al-Karaki J. N., Kamal A. E. (2004) Routing techniques in wireless sensor networks: A survey. IEEE Transactions on Wireless Communications 11(6): 6–28

    Article  Google Scholar 

  24. Kuhn, F., Wattenhofer, R., & Zollinger, A. (2003). Worst-case optimal and average-case efficient geometric ad-hoc routing. In Proceeding of MobiHoc’03 (pp. 267–278). Annapolis, Maryland, USA: ACM

  25. Stojmenovic I., Lin X. (2001) Loop-free hybrid single-path/ooding routing algorithms with guaranteed delivery for wireless networks. IEEE Transactions on Parallel and Distributed Systems 12(10): 1023–1032

    Article  Google Scholar 

  26. Chalermek, I., Ramesh, G., & Deborah, E. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In Proceding of Mobicom’00 (pp. 56–67). Boston, MA, USA: ACM.

  27. Karp, B. (2000). Geographical routing for wireless networks. PhD Dissertation, Harvard University.

  28. Tian L., Xie D. L., Ren B., Zhang L., Cheng S. D. (2007) Routing void problem of greedy forwarding strategy in wireless sensor networks. Journal of Electronics & Information Technology 29(12): 2996–3000

    Google Scholar 

  29. Bettstetter C., Hartenstein H., Pérez-Costa X. (2004) Stochastic properties of the random waypoint mobility model. Wireless Networks 10(5): 555–567

    Article  Google Scholar 

  30. Johnson, D. B., & Maltz, D. B. (1996). Dynamic source routing in ad hoc wireless networks. In T. Imielinski, & H. Korth (Eds.), Mobile computing (Chap. 5, pp. 153–181). Dordrecht: Kluwer Academic Publishers.

  31. Heinzelman W. B., Chandrakasan A. P., Balakrishnan H. (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications 1(4): 660–670

    Article  Google Scholar 

  32. Rappaport T. (1996) Wireless communications: Principles & practice. Prentice-Hal, Englewood Cliffs, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Cao, L., Bao, Z. et al. Up-Down Links Dualpath Greedy Routing Protocol for Wireless Sensor Networks. Wireless Pers Commun 64, 323–345 (2012). https://doi.org/10.1007/s11277-010-0201-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-0201-7

Keywords

Navigation