Skip to main content
Log in

A Generalized BER Prediction Method for Differential Chaos Shift Keying System Through Different Communication Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we present a generalized accurate methodology to predict the bit error rate performance for non-coherent chaos-based communication systems. The Gaussian approximation approach, which is widely used to compute the performance of such systems, leads to inaccurate results, especially with respect to low spreading factors. Our new approach based on the chaos bit energy distribution gives accurate results even for low spreading factors. The system is studied and simulated under an additive white Gaussian noise, Rice and Rayleigh channels. Finally, we compare our approach to the Gaussian approximation approach. Computer simulations shows a high accuracy for our method, especially for small spreading factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Geisel T., Alouini M. S. (1984) Statistical properties of chaos in Chebyshev map. Physics Letters A 6: 263–266

    Article  Google Scholar 

  2. Isabelle S. H., Wornell G. W. (1997) Statistical analysis and spectral estimation techniques for one-dimensional chaotic signals. IEEE Transactions on Signal Processing 45: 1495–1497

    Article  MATH  Google Scholar 

  3. Kaddoum, G., Chargé, P., Roviras, D., & Fournier-Prunaret, D. (2007). Comparison of chaotic sequences in a chaos based DS-CDMA system. In Proceedings International symposium on nonlinear theory and its applications. Vancouver: Canada.

  4. Kaddoum, G., Chargé, P., Roviras, D., & Fournier-Prunaret, D. (2009). A methodology for bit error rate prediction in chaos-based communication systems. Springer, Birkhäuser, Circuits, Systems and Signal Processing. doi:10.1007/s00034-009-9124-5.

  5. Kaddoum, G., Coulon, M., Roviras, D., & Chargé, P. (2009). Performance of multi-user asynchronous chaos-based communication systems through m-distributed fading channel. In Proceedings EUSIPCO. Glasgow: Scotland.

  6. Kaddoum, G., Roviras, D., Chargé, P., & Fournier-Prunaret, D. (2007). Analytical calculation of BER in communication systems using a piecewise linear chaotic map. In Proceedings European Conference on Circuit Theory and Design. Seville: Spain.

  7. Kennedy M. P., Kolumbán G., Kis G., Jákó Z. (2000) Performance evaluation of FM-DCSK modulation in multipath environments. IEEE Transactions Circuits and Systems 47: 1702–1711

    Article  Google Scholar 

  8. Kennedy M. P., Rovatti R., Setti G. (2000) Chaotic electronics in telecommunications. CRC press, London

    Google Scholar 

  9. Kolumbán G., Kis G., Jákó Z., Kennedy M. P. (1998) FM-DCSK: A robust modulation scheme for chaotic communications. Transactions Fundamentals of Electronics Communications and Computer Sciences 89: 1798–1802

    Google Scholar 

  10. Kolumbán, G., Vizvari, G. K., Schwarz, W., & Abel, A. (1996). Differential chaos shift keying: A robust coding for chaos communication. In Proceedings International Workshop on Nonlinear Dynamics of Electronic Systems (pp. 92–97). Seville: Spain.

  11. Lau F. C. M., Tse C. K. (2003) Chaos-based digital communication systems. Springer-Verlag, Germany

    MATH  Google Scholar 

  12. Lau F. M., Cheong K. Y., Tse C. K. (2003) Permutation-based DCSK and multiple-access dcsk systems. IEEE Transactions Circuits and Systems 50: 733–742

    Article  MathSciNet  Google Scholar 

  13. Lawrance A. J., Ohama G. (2003) Exact calculation of bit error rates in communication systems with chaotic modulation. IEEE Transactions Circuits and Systems 50: 1391–1400

    Article  MathSciNet  Google Scholar 

  14. Mandal S., Banerjee S. (2004) Analysis and CMOS implementation of a chaos-based communication system. IEEE Transactions Circuits and Systems 51: 1708–1722

    Article  Google Scholar 

  15. Pecora L. M., Carroll T. L. (1990) Synchronization in chaotic systems. Physical Review A 64: 821–823

    MathSciNet  Google Scholar 

  16. Sushchik M., Tsimring L. S., Volkovskii A. R. (2000) Performance analysis of correlation-based communication schemes utilizing chaos. IEEE Transactions Circuits and Systems 47: 1684–1691

    Article  Google Scholar 

  17. Xia Y., Tse C. K., Lau F. C. M. (2004) Performance of differential chaos-shift-keying digital communication systems over a multipath fading channel with delay spread. IEEE Transactions Circuits System II, Express Briefs 51: 680–684

    Article  Google Scholar 

  18. Xia Y., Tse C. K., Lau F. C. M., Kolumbán G. (2005) Performance of frequency-modulated differential chaos-shift-keying communication system over multipath fading channels with delay spread. International Journal of Bifurcation and Chaos 15: 4027–4033

    Article  MATH  Google Scholar 

  19. Yao J., Lawrance A. J. (2006) Performance analysis and optimization of multi-user differential chaos-shift keying communication systems. IEEE Transactions Circuits and Systems 53: 2075–2091

    Article  MathSciNet  Google Scholar 

  20. Zhou Z., Wang J., Ye Y. (2008) Performance of multiple-access communication over multipath channel with delay spread. Brikhaüser Transactions Circuits System and Signature Process 2008: 507–518

    Article  Google Scholar 

  21. Zhou, Z., Wang, J., & Ye, Y. (2009). Exact ber analysis of differential chaos shift keying communication system in fading channel. Springer Trans. Wireless Personal Communications 2009. doi:10.1007/s11-277-009-9685-4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Kaddoum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaddoum, G., Gagnon, F., Chargé, P. et al. A Generalized BER Prediction Method for Differential Chaos Shift Keying System Through Different Communication Channels. Wireless Pers Commun 64, 425–437 (2012). https://doi.org/10.1007/s11277-010-0207-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-0207-1

Keywords

Navigation