Skip to main content
Log in

On the Network Coverage Intensity in the Presence of Clock Asynchrony

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

An exact and explicit expression is derived for the network coverage intensity in the presence of clock asynchrony. The expression involves the well known Lauricella function of type A. Its accuracy is compared with the most recently known bound/approximation for the network coverage intensity. A new better approximation for the network coverage intensity is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Choi W., Das S. K. (2006) Coverage-adaptive random sensor scheduling for application-aware data gathering in wireless sensor networks. Computer Communications 29: 3467–3482

    Article  Google Scholar 

  2. Mourikis A. I., Roumeliotis S. I. (2006) Optimal sensor scheduling for resource-constrained localization of mobile robot formations. IEEE Transactions on Robotics 22: 917–931

    Article  Google Scholar 

  3. He Y., Chong E. K. P. (2006) Sensor scheduling for target tracking: A Monte Carlo sampling approach. Digital Signal Processing 16: 533–545

    Article  Google Scholar 

  4. Kreucher C., Blatt D., Hero A., Kastellab K. (2006) Adaptive multi-modality sensor scheduling for detection and tracking of smart targets. Digital Signal Processing 16: 546–567

    Article  Google Scholar 

  5. Patan M. (2006) Optimal activation policies for continuous scanning observations in parameter estimation of distributed systems. International Journal of Systems Science 37: 763–775

    Article  MathSciNet  MATH  Google Scholar 

  6. Clarkson I. V. L., El–Mahassni E. D., Howard S. D. (2006) Sensor scheduling in electronic support using Markov chains. IEE Proceedings—Radar Sonar and Navigation 153: 325–332

    Article  Google Scholar 

  7. Chhetri, A. S., Morrell, D., & Papandreou–Suppappola, A. (2006). Nonmyopic sensor scheduling and its efficient implementation for target tracking applications. EURASIP Journal on Applied Signal Processing, Art. No. 31520.

  8. Liu C., Wu K., Xiao Y., Sun B. (2006) Random coverage with guaranteed connectivity: Joint scheduling for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems 17: 562–575

    Article  Google Scholar 

  9. Gupta V., Chung T. H., Hassibi B., Murray R. M. (2006) On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage. Automatica 42: 251–260

    Article  MathSciNet  MATH  Google Scholar 

  10. Ren S. S., Li Q., Wang H. N., Chen X., Zhang X. D. (2005) Analyzing object detection quality under probabilistic coverage in sensor networks. Lecture Notes in Computer Science 3552: 107–122

    Article  Google Scholar 

  11. Gage A., Murphy R. R. (2004) Sensor scheduling in mobile robots using incomplete information via min-conflict with happiness. IEEE Transactions on Systems Man and Cybernetics Part B—Cybernetics 34: 454–467

    Article  Google Scholar 

  12. Krishnamurthy V. (2002) Algorithms for optimal scheduling and management of Hidden Markov model sensors. IEEE Transactions on Signal Processing 50: 1382–1397

    Article  MathSciNet  Google Scholar 

  13. Evans J., Krishnamurthy V. (2001) Optimal sensor scheduling for hidden Markov model state estimation. International Journal of Control 74: 1737–1742

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee H. W. J., Teo K. L., Lim A. E. B. (2001) Sensor scheduling in continuous time. Automatica 37: 2017–2023

    Article  MATH  Google Scholar 

  15. Savkin A. V., Evans R. J., Skafidas E. (2001) The problem of optimal robust sensor scheduling. Systems and Control Letters 43: 149–157

    Article  MathSciNet  MATH  Google Scholar 

  16. Wan X., Xu G. Y. (1996) Camera parameters estimation and evaluation in active vision system. Pattern Recognition 29: 439–447

    Article  Google Scholar 

  17. Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. In Proceedings of the IEEE international conference on communications, Helsinki, Finland.

  18. Arnold B. C., Balakrishnan N., Nagaraja H. N. (1992) A first course in order statistics. Wiley, New York

    MATH  Google Scholar 

  19. Exton H. (1978) Handbook of hypergeometric integrals: Theory, applications, tables, computer programs. Halsted Press, New York

    MATH  Google Scholar 

  20. Nadarajah S. (2008) Explicit expressions for moments of order statistics. Statistics and Probability Letters 78: 196–205

    Article  MathSciNet  MATH  Google Scholar 

  21. Gascuel O., Caraux G. (1992) Bounds on expectations of order statistics via extremal dependences. Statistics and Probability Letters 15: 143–148

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saralees Nadarajah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadarajah, S. On the Network Coverage Intensity in the Presence of Clock Asynchrony. Wireless Pers Commun 60, 295–305 (2011). https://doi.org/10.1007/s11277-010-9944-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-9944-4

Keywords

Navigation