Skip to main content
Log in

Deploying Large-Scale IEEE802.11 Networks Using IP Paging with Link-Specific Capabilities: A Standard Compliant Approach and its Performance Analysis

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

IEEE802.11 is a layer two technology that offers limited mobility support. It suffers from scalability problems caused by the performance of the mechanisms related to the address resolution and the discovery and maintenance of the path information. In this paper, we propose using IP paging with link-specific capabilities to solve this problem. The need of these capabilities is justified showing the limitations of pure-IP solutions when they interact with IEEE802.11 specific functions, mainly the power save mode (PSM). Then, a comprehensive proposal for an IP paging solution that is an extension of the Mobile IPv4 Regional Registration (MIPv4-RR) protocol is presented. Its strengths lie in the fact that there are no interaction problems with PSM, and it is fully compliant with existing IEEE802.11 devices. Finally, in order to show the excellent scalability of our link-specific solution, we carry out an analytical study of its mobility signaling and compare it with the standard MIPv4-RR protocol and IIPP (Integrated IP Paging Protocol), another IP paging solution that does not implement link-specific functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEEE, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11, June 1997.

  2. San Francisco selects Google/Earthlink for citywide WiFi. http://www.engadget.com/2006/04/06/san-francisco-selects-google-earthlink-for-citywide-wifi/. Accessed 11 July 2009.

  3. Myers, A., Ng, E., & Zhang, H. (2004). Rethinking the service model: Scaling Ethernet to a million nodes. In Proceedings of ACM HotNets’04, San Diego, USA.

  4. Perkins, C. (Ed.). (2002). IP Mobility Support for IPv4, IETF RFC 3344.

  5. Kempf, J., & Mutaf, P. (2003). IP paging considered unnecessary: Mobile IPv6 and IP Paging for dormant mode location update in macrocellular and hotspot networks. In Proceedings of IEEE WCNC’03 (Vol. II, pp. 1032–1036) New Orleans, USA.

  6. Liebsch, M., & Zitterbart, M. (2006). Paging and power saving in IEEE 802.11-enabled networks: A simulative study. In Proceedings of the 9th ACM MSWiM’06 (pp. 78–85). Torremolinos, Spain.

  7. Liebsch M., Lamparter B.: A generic IP paging architecture and protocol. Elsevier 49(3), 427–448 (2005)

    Article  Google Scholar 

  8. Ozugur T., Sarikaya B.: Combining layer 2-layer 3 paging for wireless LANs. IEEE Transactions on Wireless Communications 5(9), 2605–2614 (2006)

    Article  Google Scholar 

  9. Fogelstroem, E., Jonsson, A., & Perkins, C. (2007). Mobile IPv4 Regional Registration, IETF RFC 4857.

  10. Ramjee, R., Li, L., La Porta, T., & Kasera, S. (2001). IP paging service for mobile hosts. In Proceeding of SIGMOBILE’01 (pp. 332–344). Rome, Italy.

  11. Vogt C., Perkins C.: The internet diary: Challenges and activities in next-generation internet design. ACM SIGMOBILE Mobile Computing and Communications Review 12(2), 67–71 (2008)

    Article  Google Scholar 

  12. Kafle V. P., Pack S., Choi Y., Kamioka E., Yamada S.: IIPP: Integrated IP paging protocol with a power save mechanism. Wireless Communications and Mobile Computing (Wiley) 7(5), 553–568 (2007)

    Article  Google Scholar 

  13. Sarikaya B., Zheng X.: SIP paging and tracking of wireless LAN hosts for VoIP. IEEE/ACM Transactions on Networking 16(3), 539–548 (2008)

    Article  Google Scholar 

  14. Lee, J., Chung, T., Pack, S., & Gundavelli, S. (2008). Shall we apply paging technologies to proxy mobile IPv6? In Proceedings of the ACM MobiArch’08 (pp. 37–42). Seattle, USA.

  15. Kempf, J. (2001). Dormant Mode Host Alerting (“IP Paging”) Problem Statement. IETF RFC 3132.

  16. Kempf, J., et al. (2001). Requirements and functional architecture for and IP host alerting protocol. IETF RFC 3154.

  17. Deering, S. (1991). ICMP Router Discovery Messages, IETF RFC 1256.

  18. Agarwal, Y., et al. (2007). Wireless wakeups revisited: Energy management for VoIP over Wi-Fi Smartphones. In Proceeding of ACM MobiSys’07 (pp. 179–191). San Juan, Puerto Rico.

  19. Wi-Fi Alliance. (2005). WMM TM Power Save for Mobile and Portable Wi-Fi® CERTIFIED Devices http://www.wi-fi.org/white_papers/whitepaper-120505-wmmpowersave. Accessed 11 July 2009.

  20. Pérez-Costa X., Camps-Mur D., Vidal A.: On distributed power saving mechanisms of wireless LANs 802.11e U-APSD vs. 802.11 power save mode. Elsevier Computer Networks 51(9), 2326–2344 (2007)

    Article  Google Scholar 

  21. Johnson, D., Perkins, C., & Arkko, J. (2004). Mobility support in IPv6, IETF RFC 3775.

  22. Nedevschi, S., Chandrashekar, J., Liu, J., Nordman, B., Ratnasamy, S., & Taft, N. (2009). Skilled in the art of being idle: Reducing energy waste in networked systems. In Proceedings of USENIX NSDI’09, Boston, USA.

  23. He, Y., Yuan, R., Ma, X., & Li, J. (2008). The IEEE 802.11 power saving mechanism: An experimental study. In Proceeding of the IEEE WCNC’08 (pp. 1362–1367). Las Vegas, USA.

  24. Forum Nokia. (2007). Recommendations for reducing power consumption of always-on applications. Version 1.0. http://sw.nokia.com/id/ee207667-1bbb-4340-9c56-fb01c20acca5/Recommendations_for_Reducing_Power_Consumption_v1_0_en.pdf. Accessed 11 July 2009.

  25. Liebsch, M., & Pérez-Costa, X. (2005). Utilization of the IEEE 802.11 power save mode with IP paging. In Proceedings of IEEE ICC’05 (pp. 1383–1389). Seoul, Korea.

  26. Vidal, R., & Paradells, J. (2006). IEEE 802.11 networks with dormant mode support: An IP paging approach and its performance analysis. In Proceedings of the ACM MobiWac’06 (pp. 1–9). Torremolinos, Spain.

  27. IEEE. (2003). IEEE trial-use recommended practice for multi-vendor access point interoperability via an inter-access point protocol across distribution systems supporting ieee 802.11 operation. IEEE Standard 802.11F.

  28. IEEE. (2004). Media access control (MAC) bridges, Revision of IEEE Standard 802.1D-1998.

  29. IEEE. (1998). Part 2: Logical link control. 802.2.

  30. Chiang, K., & Shenoy, N. (2004). A 2-D random-walk mobility model for location-management studies in wireless networks. IEEE Transactions on Vehicular Technology, 53(2).

  31. Lin Y.: Reducing location update cost in a PCS network. IEEE/ACM Transactions on Networking 5(1), 25–33 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Vidal Ferré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal Ferré, R., Garcia Villegas, E. & Paradells Aspas, J. Deploying Large-Scale IEEE802.11 Networks Using IP Paging with Link-Specific Capabilities: A Standard Compliant Approach and its Performance Analysis. Wireless Pers Commun 60, 363–383 (2011). https://doi.org/10.1007/s11277-010-9960-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-9960-4

Keywords

Navigation