Skip to main content
Log in

Design of Efficiently Encodable Rate-Compatible LDPC Codes Using Vandermonde Extension Matrices

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A low-complexity algorithm for the design of efficiently-encodable rate-compatible (RC) low-density parity-check (LDPC) codes by deterministically extending an irregular repeat-accumulate (IRA) is introduced. The extending structure is based on circulants shifted according a truncated Vandermonde matrix (VM) and therefore termed as “extended VM” (eVM). The novel extending algorithm is significantly less computationally complex than other known similar methods since it does not require any optimization of the extending profile or any post-construction girth conditioning. To improve the codes’ properties and correcting capabilities in low code rate applications, the optimal proportions of degree-1 and degree-2 parity bits for the extended nodes are investigated and, in contrast to existing deterministic extending approaches for RC-IRA codes, an extending increment step equal to half the information block length is chosen. Various bit error rate (BER) and frame error rate (FER) have been obtained for different code rates, R, and information block length k 0 = 512 and 1024 bits considering an additive white Gaussian noise (AWGN) channel. The results have demonstrated that the proposed eVM RC-LDPC codes, despite their very simple structure and very low computational complexity, exhibit excellent performance only slightly inferior to both dedicated IRA and previously known RC-IRA codes for different data block sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin S., Yu P. (1982) A hybrid ARQ scheme with parity retransmission for error control of satellite channels. IEEE Transactions on Communications 30: 1701–1719

    Article  MATH  Google Scholar 

  2. Hagenauer J. (1988) Rate-compatible punctured convolutional codes (RCPC codes) and their applications. IEEE Transactions on Communications 36(4): 389–400

    Article  Google Scholar 

  3. Pursely M. B., Sandberg S. D. (1991) Incremental redundancy transmission for meteor burst communications. IEEE Transactions on Communications 39(5): 689–702

    Article  Google Scholar 

  4. Rowitch D. N., Milstein L. B. (2000) On the performance of hybrid FEC/ARQ systems using rate compatible punctured turbo (RCPT) codes. IEEE Transactions on Communications 48(6): 948–959

    Article  Google Scholar 

  5. Li, J., & Narayanan, K. R. (2002). Rate-compatible low-density parity-check codes for capacity-approaching ARQ schemes in packet data communications. In Proceedings of IASTED international conference. Communications, internet, and information technology (CIIT) (pp. 201–206). St. Thomas, Virgin Islands, USA, November 2002.

  6. Yazdani M. R., Banihashemi A. H. (2004) On construction of rate-compatible low-density parity-check codes. IEEE Communications Letters 8(3): 159–161

    Article  Google Scholar 

  7. Gallager R. G. (1962) Low-density parity-check codes. IRE Transaction on Information Theory 39(1): 37–45

    Google Scholar 

  8. MacKay D. J. C., Neal R. M. (1997) Near Shannon limit performance of low density parity check codes. Electronics Letters 33(6): 457–458

    Article  Google Scholar 

  9. Richardson T. J., Urbanke R. L. (2001) Efficient encoding of low-density parity-check codes. IEEE Transactions on Information Theory 47(2): 638–656

    Article  MathSciNet  MATH  Google Scholar 

  10. Divsalar, D., Jin, H., & McEliece, R. (1998). Coding theorems for “turbo-like” codes. In Proceedings of 36th Allerton conference on communications, control, and computing (pp. 201–210). Allerton House, Monticello, Illinois, USA, September 1998.

  11. Tanner, R. M. (1999). On quasi-cyclic repeat-accumulate codes. In Proceedings of 37th Allerton conference on communications, control, and computing (pp. 249–259). Allerton House, Monticello, IL, USA, September 1999.

  12. Jin, H., Khandekar, A., & McEliece, R. (2000). Irregular repeat-accumulate codes. In Proceedings of international symposium on turbo codes and related topics (pp. 1–2). Brest, France, June 2000.

  13. Abbasfar, A., Divsalar, D., & Yao, K. (2004). Accumulate repeat accumulate codes. In Proceedings of IEEE international symposium on information theory (p. 505) Chicago, IL, USA, June 2004.

  14. Divsalar, D., Dolinar, S., & Thorpe, J. (2004). accumulate-repeat-accumulate-accumulate-codes. In Proceedings of IEEE 60th vehicular technology conference (VTC2004-Fall) (pp. 2292–2296). Los Angeles, CA, USA, September 2004.

  15. EN 302.307. (2004). Digital video broadcasting (DVB); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications.

  16. IEEE 802.16e-2005 and 802.16-2004/Cor 1-2005. (2006). IEEE standard for local and metropolitan area networks Part 16: air interface for fixed and mobile broadband wireless access system, amendment 2: physical and medium access control layers for combined fixed and mobile operation in licensed bands and corrigendum 1.

  17. IEEE 802.11n. (2009). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Enhancements for higher throughput.

  18. Benmayor, D., Papaharalabos, S., Mathiopoulos, P. T., Tsiropoula, G., & Constantinou, P. (2008). Rate-compatible irregular repeat-accumulate codes for DVB-SH applications. In Proceedings of IEEE international workshop on satellite communications, (IWSSC) (pp. 239–243). Toulouse, France, October 2008.

  19. Zaheer S. F., Zummo S. A., Landolsi M. A., Kousa M. A. (2008) Improved regular and semi-random rate-compatible low-density parity-check codes with short block lengths. IET Communications 2(7): 960–971

    Article  MathSciNet  Google Scholar 

  20. Yue G., Wang X., Madihian M. (2007) Design of rate-compatible irregular repeat accumulate codes. IEEE Transactions on Communications 55(6): 1153–1163

    Article  Google Scholar 

  21. Hu X. Y., Eleftheriou E., Arnold D. M. (2005) Regular and irregular progressive edge-growth tanner graphs. IEEE Transactions on Information Theory 51(1): 386–398

    Article  MathSciNet  Google Scholar 

  22. Zhang Y., Ryan W. E. (2007) Structured IRA codes: performance analysis and construction. IEEE Transactions on Communications 55(5): 837–844

    Article  Google Scholar 

  23. Honary, B., & Pandya, N. (2006). Variable-rate low-density check codes for DVB-S2 applications. In Proceedings of the institution of engineering and technology seminar on digital video broadcasting over satellite: present and future (pp. 15–20). Savoy Place, London, UK, November 2006.

  24. Bonello N., Chen Sheng, Hanzo L. (2008) Construction of regular quasi-cyclic protograph LDPC codes based on vandermonde matrices. IEEE Transactions on Vehicular Technology 57(4): 2583–2588

    Article  Google Scholar 

  25. Roumy A., Guemghar S., Caire G., Verdu S. (2004) Design methods for irregular repeat-accumulate codes. IEEE Transactions on Information Theory 50(8): 1711–1727

    Article  MathSciNet  Google Scholar 

  26. Tanner R. M. (1981) A recursive approach to low complexity codes. IEEE Transactions on Information Theory 27(5): 533–547

    Article  MathSciNet  MATH  Google Scholar 

  27. Horn R. A., Johnson C. R. (1994) Topics in matrix analysis. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  28. Richardson, T., & Urbanke, R. (2002). Multi-edge type LDPC codes. In Proceedings of workshop honoring Prof. Bob McEliece on his 60th birthday (but not included in the proceedings). Pasadena, CA, USA: California Institute of Technology, May 2002.

  29. Yue G., Ping L., Wang X. (2007) Generalized low-density parity-check codes based on hadamard constraints. IEEE Transactions on Information Theory 53(3): 1058–1079

    Article  MathSciNet  Google Scholar 

  30. http://ipgdemos.epfl.ch/ldpcopt/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Benmayor.

Additional information

This paper is part of the 03ED554 research project, implemented within the framework of the “Reinforcement Programme of Human Research Manpower” (PENED) and co-financed by National and Community Funds (20% from the Greek Ministry of Development-General Secretariat of Research and Technology and 80% from E.U.- European Social Fund).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benmayor, D., Papaharalabos, S., Mathiopoulos, P.T. et al. Design of Efficiently Encodable Rate-Compatible LDPC Codes Using Vandermonde Extension Matrices. Wireless Pers Commun 60, 695–708 (2011). https://doi.org/10.1007/s11277-010-9969-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-9969-8

Keywords

Navigation