Skip to main content
Log in

Spectrum Sensing Framework for Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Spectrum sensing feature of cognitive radio devices represents a cornerstone characteristic facilitating real-time and accurate spectrum occupancy measurements in cognitive radio networks. It practically enables the cognitive radio devices to detect vacant spectrum holes and use them for their communication purposes. There are numerous spectrum sensing methods proposed in the literature ranging from local based ones to cooperative strategies among several devices increasing the confidence level of the detected spectrum. This paper gives a general spectrum sensing framework for cognitive radio networks, classifies and explores different spectrum sensing techniques and approaches and shows practical examples, from authors’ own experience, of realized spectrum sensing engines and strategies along with some obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitola, J. III (2000). Cognitive radio—an integrated agent architecture for software defined radio. PhD Thesis, KTH Royal Institute of Technology, Stockholm, Sweden.

  2. FCC 10-174 (2010). Second memorandum opinion and order. Released, September 23, 2010.

  3. Denkovski, D., Pavloski, M., Atanasovski, V., & Gavrilovska, L. (2010). Parameter settings for 2.4 GHz ISM spectrum measurements. CogArt 2010, Rome, Italy, November 2010.

  4. Pavlovska, V., Denkovski, D., Atanasovski, V., & Gavrilovska, L. (2010). RAC2E: Novel rendezvous protocol for asynchronous cognitive radios in cooperative environments. IEEE PIMRC 2010, Istanbul, Turkey, September 2010.

  5. Gavrilovska, L. (2010). Spectrum sensing framework for cognitive radio networks. In presentation at Joint CTiF Workshop “Green Energy” with focus on “Cognitive Networks and Spectrum Management”, Aalborg, Denmark, May 31–June 1, 2010.

  6. Akyildiz I. F., Lee W.-Y., Vuran M. C., Mohanty S. (2006) NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks 50: 2127–2159

    Article  MATH  Google Scholar 

  7. Urkowitz, H. (1967). Energy detection of unknown deterministic signals. In Proceedings of IEEE (pp. 523–531). April 1967.

  8. Zeng, Y., & Liang, Y.-C. (2008). Eigenvalue based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6), June 2009.

  9. Zeng, Y., & Liang, Y.-C. (2006). Eigenvalue based spectrum sensing algorithms. Submission to IEEE P802.22 Wireless RANs, 14 July 2006. doc: IEEE 802.22-06/0118-00-0000.

  10. Sahai, A., & Cabric, D. (2005). Spectrum sensing: Fundamental limits and practical challenges. IEEE DySPAN 2005, Baltimore, MD, USA, November 2005.

  11. Dandawate A. V., Giannakis G. B. (1994) Statistical tests for presence of cyclostationarity. IEEE Transactions on Signal Processing 42(9): 2355–2369

    Article  Google Scholar 

  12. Tang, H. (2005). Some physical layer issues of wide-band cognitive radio systems. In Proceedings of the IEEE international symposium on new frontiers in dynamic spectrum access networks (pp. 151–159). November 2005

  13. Ycek T., Arslan H. (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials 11(1): 116–160

    Article  Google Scholar 

  14. Wild, B., & Ramchandran, K. (2005). Detecting primary receivers for cognitive radio applications. IEEE DySPAN 2005, Baltimore, MD, USA, November 2005.

  15. Hoang, A. T., Liang, Y.-C., & Islam, M. H. (2007). Maximizing throughput of cognitive radio networks with limited primary users’ cooperation. IEEE ICC 2007, Glasgow, Scotland, June 2007.

  16. Bakr, O., Wild, B., Johnson, M., & Ramchandran, K. (2008) A multi-antenna framework for spectrum reuse based on primary-secondary cooperation. IEEE DySPAN 2008, Chicago, IL, USA, October 2008.

  17. Ganesan, G., & Li, Y. (2005). Agility improvement through cooperative diversity in cognitive radio. IEEE GLOBECOM 2005, St. Louis, MO, USA, November 28–December 2, 2005.

  18. Lee, C.-H., & Wolf, W. (2008). Energy efficient techniques for cooperative spectrum sensing in cognitive radios. IEEE CCNC 2008, Las Vegas, Nevada, USA, January 2008.

  19. Zhang, W., Mallik, R. K., & Letaief, K. B. (2008). Cooperative spectrum sensing optimization in cognitive radio networks. IEEE ICC 2008, Beijing, China, May 2008.

  20. Unnikrishnan, J., & Veeravalli, V. V. (2007). Cooperative spectrum sensing and detection for cognitive radio. IEEE GLOBECOM 2007, Washington, DC, USA, November 2007.

  21. Quan, Z., Cui, S., & Sayed, A. H. (2007). An optimal strategy for cooperative spectrum sensing in cognitive radio networks. IEEE GLOBECOM 2007, Washington, DC, USA, November 2007.

  22. Ma, J., & Li, Y. (2007). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE GLOBECOM 2007, Washington, DC, USA, November 2007.

  23. Chen, R., Park, J.-M., & Bian, K. (2008). Robust distributed spectrum sensing in cognitive radio networks. IEEE INFOCOM 2008, Phoenix, AZ, USA, April 2008.

  24. Ganesan G., Li Y., Bing B., Li S. (2008) Spatiotemporal sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications 26(1): 5–12

    Article  Google Scholar 

  25. Sahai, A., Tandra, R., Mishra, S. M., & Hoven, N. (2006). Fundamental design tradeoffs in cognitive radio systems. TAPAS2006, Boston, MA, USA, August 2006.

  26. Laneman J. N., Tse D. N. C. (2004) Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory 50: 3062–3080

    Article  MathSciNet  Google Scholar 

  27. Cardoso, L. S., Debbah, M., Bianchi, P., & Najim, J. (2008). Cooperative spectrum sensing using random matrix theory. IEEE ISWPC 2008, Santorini, Greece, May 2008.

  28. Ganesan G., Li Y. (2007) Cooperative spectrum sensing in cognitive radio, part I: Two user networks. IEEE Transactions on Wireless Communications 6(6): 2204–2213

    Article  Google Scholar 

  29. Ganesan G., Li Y. (2007) Cooperative spectrum sensing in cognitive radio, part II: Multiuser networks. IEEE Transactions on Wireless Communications 6(6): 2214–2222

    Article  Google Scholar 

  30. Lee, K., & Yener, A. (2007). Throughput enhancing cooperative spectrum sensing strategies for cognitive radios. In 41st annual Asilomar conference on signals, systems, and computers, Asilomar’07, Pacific Grove, CA, November 2007

  31. Fodor, V., Giaropoluos, I., & Pescosolido, L. (2009) Detecting low-power primary signals via distributed sensing to support opportunistic spectrum access. IEEE ICC 2009, Dresden, Germany, June 2009.

  32. Wireless Networks Group (WiNGroup). Information available at: http://wingroup.feit.ukim.edu.mk.

  33. Ss Cyril and Methodius University in Skopje (UKIM). Information available at: http://www.ukim.edu.mk.

  34. Faculty of Electrical Engineering and Information Technologies (FEEIT)—Skopje. Information available at: http://www.feit.ukim.edu.mk.

  35. Wireless Open-Access Research Platform (WARP). Rice University. Information available at: http://warp.rice.edu.

  36. WiSpy. Information available at: http://www.metageek.net.

  37. CalRadio. Information available at: http://calradio.calit2.net.

  38. Universal Software Radio Peripheral 2 (USRP2). Information available at: www.ettus.com.

  39. GNURadio. Information available at: www.gnuradio.org.

  40. Texas Instruments (TI) MSP430 microprocessor based family of products. Information available at: www.ti.com.

  41. Sanders, F. H. (1998). Broadband spectrum surveys in Denver, CO, San Diego, CA, and Los Angeles, CA: Methodology, analysis, and comparative results. In Proceedings of IEEE symposium on electromagnetic compatibility.

  42. McHenry, M. A., & McCloskey, D. (2006). Multi-band, multi-location spectrum occupancy measurements. In Proceedings of International Symposium on Advanced Radio Technologies (ISART). Boulder, CO, USA, March 2006.

  43. McHenry, M. A., Tenhula, P. A., McCloskey, D., Roberson, D. A., & Hood, C. S. (2006). Chicago spectrum occupancy measurements & analysis and a long-term studies proposal. In Proceedings of workshop on Technology and Policy for Accessing Spectrum (TAPAS). Boston, MA, USA, August 2006.

  44. McHenry, M. A. (2007). NSF spectrum occupancy measurements: Project summary. In Technical project report, Vienna, VA, USA, August 2007.

  45. VT-CORNET: Cognitive Radio Network Testbed. Available at: http://wireless.vt.edu/coreareas/cognitive.html.

  46. Wellens M., Mähönen P. (2010) Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model. Mobile networks and applications. 15(3): 461–474

    Article  Google Scholar 

  47. López-Benítez, M., Casadevall, F., Umbert, A., Pérez-Romero, J., Hachemani, R., Palicot, J., & Moy, C. (2009). Spectral occupation measurements and blind standard recognition sensor for cognitive radio networks. In Proceedings of the 4th international conference on cognitive radio oriented wireless networks and communications (CrownCom 2009), special session on flexible and opportunistic wireless access (pp. 1–9). Hannover, Germany, June 22–24, 2009.

  48. Islam, M., Koh, C., Oh, S., Qing, X., Lai, Y., Wang, C., Liang, Y.-C., Toh, B., Chin, F., Tan, G., & Toh, W. (2008). Spectrum survey in Singapore: Occupancy measurements and analyses. In Proceedings of international conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM). Singapore, May 2008.

  49. IEEE Standards Coordinating Committee 41 (Dynamic Spectrum Access Networks). IEEE 1900 Standard. [Online]. Available: http://www.scc41.org/crinfo.

  50. ETSI Reconfigurable Radio Systems (RRS). Information available at: http://www.etsi.org/website/technologies/RRS.aspx.

  51. Software Defined Radio (SDR) Forum. Information available at: www.sdrforum.org.

  52. EC FP7 project QUASAR. Information available at: http://www.quasarspectrum.eu.

  53. EC FP7 project FARAMIR. Information avaialable at : http://www.ict-faramir.eu.

  54. EC FP7 project ARAGORN. Information available at: http://www.ict-aragorn.eu.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liljana Gavrilovska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilovska, L., Atanasovski, V. Spectrum Sensing Framework for Cognitive Radio Networks. Wireless Pers Commun 59, 447–469 (2011). https://doi.org/10.1007/s11277-011-0239-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0239-1

Keywords

Navigation