Skip to main content
Log in

A MAC-Layer QoS Provisioning Protocol for Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Due to the proliferation of diverse network devices with multimedia capabilities, there is an increasing need for Quality of Service (QoS) provisioning in wireless networks. The MAC layer protocol with enhanced distributed channel access (EDCA) in the IEEE 802.11-2007 is able to provide differentiated QoS for different traffic types in wireless networks through varying the Arbitration Inter-Frame Spaces (AIFS) and contention window sizes. However, the performance of high priority traffic can be seriously degraded in the presence of strong noise over the wireless channels. Schemes utilizing adaptive modulation and coding (AMC) technique have also been proposed for the provisioning of QoS. They can provide limited protection in the presence of noise but are ineffective in a high noise scenario. Although multiple non-overlapped channels exist in the 2.4 and 5 GHz spectrum, most IEEE 802.11-based multi-hop ad hoc networks today use only a single channel at anytime. As a result, these networks cannot fully exploit the aggregate bandwidth available in the radio spectrum provisioned by the standards. By identifying vacant channels through the use of cognitive radios technique, the noise problem can be mitigated by distributing network traffic across multiple vacant channels to reduce the node density per transmission channel. In this paper, we propose the MAC-Layer QoS Provisioning Protocol (MQPP) for 802.11-based cognitive radio networks (CRNs) which combines adaptive modulation and coding with dynamic spectrum access. Simulation results demonstrate that MQPP can achieve better performance in terms of lower delay and higher throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akyildiz I. F., & Wang X. (2005) A Survey on Wireless Mesh Networks. IEEE Communications Magazine 43(9): S23–S30

    Article  Google Scholar 

  2. Gupta P., Kumar P. R. (2000) The Capacity of Wireless Networks. IEEE Transactions on Information Theory 46(2): 388–404

    Article  MathSciNet  MATH  Google Scholar 

  3. Toumpis, S., Goldsmith, A. J., & Sayir, J. (2004). Capacity results for asymmetric wireless networks. In Proceedings of international zurich seminar on communications (pp. 180–183).

  4. Jun J., Sichitiu M. L. (2003) The nominal capacity of wireless mesh networks. IEEE Wireless Communications 10(5): 8–14

    Article  Google Scholar 

  5. http://standards.ieee.org/getieee802/802.11.html.

  6. Zhao L., Wu J. Y., Zhang H., Zhang J. (2008) Integrated quality-of-service differentiation over IEEE 802.11 wireless LANs. IET Communications 2(2): 329–335

    Article  Google Scholar 

  7. Lee J., Liao W., Chen J.-M., Lee H.-H. (2009) A practical QoS solution to voice over IP in IEEE 802.11 WLANs. IEEE Communications Magazine 47(4): 111–117

    Article  Google Scholar 

  8. He Y., Sun J., Yuan R., Gong W. (2010) A reservation based backoff method for video streaming in 802.11 home networks. IEEE Journal on Selected Areas in Communications 28(3): 332–343

    Article  Google Scholar 

  9. Serrano P., Banchs A., Patras P., Azcorra A. (2010) Optimal configuration of 802.11e EDCA for real-time and data traffic. IEEE Transactions on Vehicular Technology 59(5): 2511–2528

    Article  Google Scholar 

  10. Nafaa A. (2007) Provisioning of multimedia services in 802.11-based networks: Facts and challenges. IEEE Wireless Communications 14(5): 106–112

    Article  Google Scholar 

  11. Villalón J., Cuenca P., Orozco-Barbosa L. (2007) On the capabilities of IEEE 802.11e for multimedia communications over heterogeneous 802.11/802.11e WLANs. Telecommunication Systems 36(1): 27–38

    Article  Google Scholar 

  12. Torres, A., Calafate, C. T., Cano, J. C., & Manzoni, P. (2009). Deploying a real IEEE 802.11e testbed to validate simulation results. In Proceedings of IEEE 34th conference on local computer networks, 2009. LCN 2009 (pp. 109–115).

  13. Ma, M., et al. (2006). A power-controlled rate-adaptive MAC protocol to support differentiated service in wireless ad hoc networks. In Proceedings of IEEE global telecommunications conference, Nov. 27 2006–Dec. 1 2006 (pp. 1–5).

  14. Pursley M. B., Royster T. C. (2008) Low-complexity adaptive transmission for cognitive radios in dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications 26(1): 83–94

    Article  Google Scholar 

  15. Shih K.-P., Chen Y.-D., Chang C.-C. (2011) A physical/virtual carrier-sense-based power control MAC protocol for collision avoidance in wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems 22(2): 193–207

    Article  Google Scholar 

  16. Mitola J. III, Maguire G. Q. Jr. (1999) Cognitive radio: Making software radios more personal. IEEE Personal Communications 6(4): 13–18

    Article  Google Scholar 

  17. Ghasemi A., Sousa E. S. (2008) Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Communications Magazine 46(4): 32–39

    Article  Google Scholar 

  18. Ghanem F., Hall P. S., Kelly J. R. (2009) Two port frequency reconfigurable antenna for cognitive radios. Electronics Letters 45(11): 534–536

    Article  Google Scholar 

  19. Chowdhury K. R., Akyildiz I. F. (2008) Cognitive wireless mesh networks with dynamic spectrum access. IEEE Journal on Selected Areas in Communications 26(1): 168–181

    Article  Google Scholar 

  20. Ganesan G., Li Y., Bing B., Li S. (2008) Spatiotemporal sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications 26(1): 5–12

    Article  Google Scholar 

  21. Hong, K., Sengupta, S., & Chandramouli, R. (2010). SpiderRadio: An incumbent sensing implementation for cognitive radio networking using IEEE 802.11 devices. In Proceedings of IEEE international conference on communications (ICC), 23–27 May 2010 (pp. 1–5).

  22. Haykin S. (2005) Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 23(2): 201–220

    Article  Google Scholar 

  23. Skalli H. et al (2007) Channel assignment strategies for multiradio wireless mesh networks: Issues and solutions. IEEE Communications Magazine 45(11): 86–95

    Article  Google Scholar 

  24. Goldsmith A., Jafar S. A., Maric I., Srinivasa S. (2009) Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE 97(5): 894–914

    Article  Google Scholar 

  25. Khalife H., Malouch N., Fdida S. (2009) Multihop cognitive radio networks: To route or not to route. IEEE Network 23(4): 20–25

    Article  Google Scholar 

  26. Jia J., Zhang Q., Shen X. (2008) HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management. IEEE Journal on Selected Areas in Communications 26(1): 106–117

    Article  Google Scholar 

  27. Ghaboosi, K., Latva-aho, M., & Xiao, Y. (2008). A distributed multi-channel cognitive MAC protocol for IEEE 802.11s wireless mesh networks. In Proceedings of 3rd international conference on cognitive radio oriented wireless networks and communications (pp. 1–8).

  28. Salameh H. A. B., Krunz M. M., Younis O. (2009) MAC protocol for opportunistic cognitive radio networks with soft guarantees. IEEE Transactions on Mobile Computing 8(10): 1339–1352

    Article  Google Scholar 

  29. Cheng, G., Liu, W., Li, Y., & Cheng, W. (2007). Joint on-demand routing and spectrum assignment in cognitive radio networks. In Proceedings of IEEE ICC 2007 (pp. 6499–6503).

  30. Khalife, H., Ahuja, S., Malouch, N., & Krunz, M. (2008). Probabilistic path selection in opportunistic cognitive radio Networks. In Proceedings of IEEE GLOBECOM 2008 (pp. 1–5).

  31. Cormio C., Chowdhury K. R. (2009) A survey on MAC protocols for cognitive radio networks. Ad Hoc Networks 7(7): 1315–1329

    Article  Google Scholar 

  32. Friis H. T. (1946) A note on a simple transmission formula. Proceedings of the IRE 34(5): 254–256

    Article  Google Scholar 

  33. Ma, M., et al. (2006) A power-controlled rate-adaptive MAC protocol to support differentiated service in wireless ad hoc networks. In Proceedings of IEEE GLOBECOM 2006 (pp. 1–5).

  34. Thoppian, M., Venkatesan, S., & Prakash, R. (2007). CSMA-based MAC protocol for cognitive radio networks. In Proceedings of IEEE international symposium on world of wireless, mobile and multimedia networks, 18–21 June 2007 (pp. 1–8).

  35. Mahasukhon, P., Hempel, M., Song, C., & Sharif, H. (2007). comparison of throughput performance for the IEEE 802.11a and 802.11g networks. In Proceedings of 21st international conference on advanced information networking and applications, 21–23 May 2007 (pp. 792–799).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maode Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

How, K.C., Ma, M. & Qin, Y. A MAC-Layer QoS Provisioning Protocol for Cognitive Radio Networks. Wireless Pers Commun 65, 203–222 (2012). https://doi.org/10.1007/s11277-011-0245-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0245-3

Keywords

Navigation