Skip to main content
Log in

Adapting Cognitive Radio Technology for Low-Power Wireless Personal Area Network Devices

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The application of wireless personal area network (WPAN) and simple point-to-point wireless communication devices has increased drastically both in private household and in our workspaces in general over the last decade. Combined with the fact that the total number of wireless devices and associated standards present in the wireless environment is experiencing an extreme growth, the frequency spectrum scarcity is exposed as a severe challenge. Setting up efficient and reliable wireless WPAN links can be challenging even today. This is especially true because of the intensive use of the license-free frequency bands, where the level of interference can be extremely high. Combined with the challenges associated with multi-path propagation and attenuation, setting up and maintaining an acceptable level of perceived QoS is a challenging job even for trained professionals. This paper discusses the challenges associated with the implementation of highly reliable low-power WPAN networks for the future and the adaption of Cognitive Radio technology as a potential solution. A brief status on the maturity of CR technology will be presented as an integral part of this discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akchurin, E., & Gefflaut, A. (2009). Dynamic and autonomous channel adaptation in wireless sensor networks. In Networked sensing systems (INSS), 2009 sixth international conference on (pp. 1–8). doi:10.1109/INSS.2009.5409924.

  2. Cafaro, G., Gradishar, T., Guimaraes, H., Heck, J., Isbell, J., Nagaraj, G., et al. (2009). A 10 MHz–4 GHz direct conversion CMOS transceiver for SDR applications. In Proceedings of the SDR ’09 technical conference and product exposition, 2009 SDR forum.

  3. Cafaro, G., Gradishar, T., Heck, J., Machan, S., Nagaraj, G., Olson, S., et al. (2007). A 100 MHz–2.5 GHz direct conversion CMOS transceiver for SDR applications. In Radio frequency integrated circuits (RFIC) symposium, 2007 IEEE (pp. 189–192). doi:10.1109/RFIC.2007.380862.

  4. (CRC), C.R.C.C.: SCARI— OPEN : Software communications architecture—reference implementation. CRC web site. http://www.crc.gc.ca/en/html/crc/home/research/satcom/rars/sdr/products/scari_open/scari_open.

  5. Eric Blossom, et al. GNU radio. GNU Radio webpage. http://www.gnuradio.org/redmine/wiki/gnuradio.

  6. ETSI Technical Committee Reconfigurable Radio Systems (RRS). (2009). ETSI TR 102 680 V1.1.1—Reconfigurable Radio Systems (RRS); SDR Reference Architecture for Mobile Device.

  7. EU: European Secure SOftware-defined Radio (ESSOR). OCCAR web site. http://www.occar-ea.org/view.php?nid=182.

  8. Federal Communications Commission (FCC): Rules and Regulations: Title 47 of the Code of Federal Regulations (CFR). FCC website. http://www.wireless.fcc.gov/index.htm?job=rules_and_regulations.

  9. Federal Communications Commission (FCC). (2004). Notice of proposed rule making—FCC 04-113.

  10. Freescale Semiconductor: MC1323x Low Cost SoC Remote Control Platform for the 2.4 GHz IEEE 802.15.4 Standard. Freescale Semiconductor website. http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC13233&fpsp=1&tab=Documentation_Tab.

  11. Gao, S., Qian, L., & Vaman, D. (2008). Distributed energy efficient spectrum access in wireless cognitive radio sensor networks. In Wireless communications and networking conference, 2008. WCNC 2008. IEEE (pp. 1442–1447). doi:10.1109/WCNC.2008.259.

  12. Goh, H., Kwong, K. H., Shen, C., Michie, C., & Andonovic, I. (2010). CogSeNet: A concept of cognitive wireless sensor network. In Consumer communications and networking conference (CCNC), 2010 7th IEEE (pp. 1–2). doi:10.1109/CCNC.2010.5421630.

  13. Hu, F., & Wang, S. (2009). Energy detection for spectrum Sensing in cognitive radio sensor network over fading channels. In Wireless communications, networking and mobile computing, 2009. WiCom ’09. 5th international conference on(pp. 1–4). doi:10.1109/WICOM.2009.5301879.

  14. IEEE 802.22 Working Group: IEEE 802.22 Working Group on Wireless Regional Area Networks Enabling Rural Broadband Wireless Access Using Cognitive Radio Technology in TV Whitespaces. IEEE 802 website, http://www.ieee802.org/22/.

  15. Ingels, M., Soens, C., Craninckx, J., Giannini, V., Kim, T., Debaillie, B., et al. (2007). A CMOS 100 MHz to 6 GHz software defined radio analog front–end with integrated pre-power amplifier. In Solid state circuits conference, 2007. ESSCIRC 2007. 33rd European (pp. 436–439). doi:10.1109/ESSCIRC.2007.4430336.

  16. Internet Engineering Task Force: IPv6 over Low power WPAN (6lowpan). IETF website. http://www.datatracker.ietf.org/wg/6lowpan/.

  17. Kawade, S., & Nekovee, M. (2010). Can cognitive radio access to tv white spaces support future home networks? (pp. 1–8). doi:10.1109/DYSPAN.2010.5457890.

  18. Kim, J., Lee, S. J., Kim, S., Ha, J. O., Min, J., Eo, Y. S., & Shin, H. (2009). A 54–862 MHz CMOS direct conversion transceiver for IEEE 802.22 cognitive radio applications (pp. 255–258). doi:10.1109/CICC.2009.5280852.

  19. Liang, Z., & Zhao, D. (2010). Quality of service performance of a cognitive radio sensor network. In Communications (ICC), 2010 IEEE international conference on (pp. 1–5). doi:10.1109/ICC.2010.5502787.

  20. Maleki, S., Pandharipande, A., & Leus, G. (2010). Energy—efficient distributed spectrum sensing for cognitive sensor networks. Sensors Journal, IEEE (99), (pp. 1–1). doi:10.1109/JSEN.2010.2051327.

  21. McCloskey, D., & Gossett, P. (2010). Wideband transceiver architectures for TV whitespace applications (pp. 1–7). doi:10.1109/DYSPAN.2010.5457884.

  22. Misic, J., & Misic, V. (2009). Simple and efficient MAC for cognitive wireless personal area networks. In Global telecommunications conference, 2009. GLOBECOM 2009. IEEE (pp. 1–6). doi:10.1109/GLOCOM.2009.5425232.

  23. Mitola, J. (1992). The software radio. IEEE national telesystems conference.

  24. Modular Software-programmable Radio Consortium. (2001). Software communications architecture specification, MSRC-5000SCA V2.2, November 17th, 2001. Tech. Rep.

  25. Norair, J. (2009). Introduction to DASH7 technologies.

  26. Nordic Semiconductor. (2010). Product brief: nRF8001 single mode bluetooth low energy slave connectivity-on-chip solution.

  27. Pollin, S., Ergen, M., Timmers, M., Dejonghe, A., van der Perre, L., Catthoor, F., Moerman, I., & Bahai, A. (2006). Distributed cognitive coexistence of 802.15.4 with 802.11 (pp. 1–5). doi:10.1109/CROWNCOM.2006.363456.

  28. Prithiviraj, V., Manikandan, K., Prasanna, C., Saranesh, S., & Subramanian, R. (2009). Front end design of software defined bts for interoperability between gsm and cdma (pp. 655–659). doi:10.1109/WIRELESSVITAE.2009.5172524.

  29. Texas Instruments. RF/IF and ZigBee solutions. TI website. http://www.focus.ti.com/analog/docs/gencontent.tsp?familyId=367&genContentId=24190.

  30. United States Department of Defense: Joint tactical radio system. JPEO JTRS web site. http://www.en.wikipedia.org/wiki/Joint_Tactical_Radio_System.

  31. Uusitalo M. A. (2006) Global vision for the future wireless world from the WWRF. Vehicular Technology Magazine, IEEE 1(2): 4–8. doi:10.1109/MVT.2006.283570

    Article  Google Scholar 

  32. Venkatesh, N. Sharing the broadcasting spectrum: Digital dividend, white spaces, power line telecommunication (PLT) system. ITU-R web site. http://www.itu.int/ITU-R/information/promotion/e-flash/4/article4.html.

  33. Wepman, J. A., & Hoffman, J. R. (2001). NTIA Report 01-388 implementation and testing of a software defined radio cellular base station receiver.

  34. WIF: Wireless Innovation Forum—Driving the future of radio communications and systems worldwide. Wireless Innovation Forum website, http://www.wirelessinnovation.org.

  35. Wikipedia: Joint Tactical Radio System. Wikipedia web. http://www.en.wikipedia.org/wiki/Joint_Tactical_Radio_System.

  36. Zensys. (2010). Datasheet: ZW0301 Z-Wave (TM) single chip—low power Z-wave (TM) transceiver with microcontroller.

  37. ZTE: ZXSDR BS8900— Dual—Mode Outdoor Macro Base Station. ZTE website. http://www.en.zte.com.cn/en/products/wireless/gsm_umts/201008/t20100810_188331.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Rohde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohde, J., Toftegaard, T.S. Adapting Cognitive Radio Technology for Low-Power Wireless Personal Area Network Devices. Wireless Pers Commun 58, 111–123 (2011). https://doi.org/10.1007/s11277-011-0291-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0291-x

Keywords

Navigation