Skip to main content
Log in

Mobile Tracking in Mixed Line-of-Sight/Non-Line-of-Sight Conditions: Algorithm and Theoretical Lower Bound

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The paper investigates the problem of mobile tracking in mixed line-of-sight (LOS)/non-line-of-sight (NLOS) conditions. The motion of mobile station is modeled by a dynamic white noise acceleration model, while the measurements are time of arrival (TOA). A first-order Markov model is employed to describe the dynamic transition of LOS/NLOS conditions. An improved Rao-Blackwellized particle filter (RBPF) is proposed, in which the LOS/NLOS sight conditions are estimated by particle filtering using the optimal trial distribution, and the mobile state is computed by applying approximated analytical methods. The theoretical error lower bound is further studied in the described problem. A new method is presented to compute the posterior Cramer-Rao lower bound (CRLB): the mobile state is first estimated by decentralized extended Kalman filter (EKF) method, then sigma point set and unscented transformation are applied to calculate Fisher information matrix (FIM). Simulation results show that the improved RBPF is more accurate than current methods, and its performance approaches to the theoretical bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silventoinen, M. I., & Rantalainen, T. (June 1996). Mobile station emergency locating in GSM. In Proceedings of IEEE International Conference on Personal Wireless Communications (pp. 232–238). Dallas, Texas.

  2. Borras, J., Hatrack, P., & Mandayam, N. B. (May 1998). Decision theoretic framework for NLOS identification. In Proceedings of IEEE Vehicular Technology Conference (pp. 731–734). Ottawa, Canada.

  3. Xiong, L. (1998). A selective model to suppress NLOS signals in angle-of-arrival (AOA). In Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1028–1031). Boston, USA.

  4. Riba, J., & Urruela, A. (May 2004). A non-line-of-sight mitigation technique based on ML-detection. In Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing (Vol. 2, pp. 153–156). Montreal QC, Canada.

  5. Chan Y. T., Tsui W. Y., So H. C., Ching P. C. (2006) Time-of-arrival based localization under NLOS conditions. IEEE Transactions on Vehicular Technology 55(1): 17–24

    Article  Google Scholar 

  6. Chen, P. C. (September 1999). A non-line-of-sight error mitigation algorithm in location estimation. In Proceedings of IEEE Wireless Communications Networking Conference (pp. 316–320).

  7. Cong, L., & Zhang, W. (Dec 2001). Non-line-of-sight error mitigation in TDOA mobile location. In Proceedings of IEEE GLOBECOM (Vol. 1, pp. 680–684). San Antonio, Texas.

  8. Khajehnouri, N., & Sayed, A. H. (April 2003). A non-line-of-sight equalization scheme for wireless cellular location. In Proceedings of IEEE Conference on Acoustics, Speech, Signal Processing (Vol. 6, pp. 549–552).

  9. Al-Jazzar, S., Caffery, J. J., & You, H. R. (May 2002). A scattering model based approach to NLOS mitigation in TOA location systems. In Proceedings of IEEE Vehicular Technology Conference (Vol. 2, pp. 861–865). Birmingham, UK.

  10. Al-Jazzar, S., & Caffery, J. J. (May 2002). ML and Bayesian TOA location estimators for NLOS environments. In Proceedings of IEEE Vehicular Technology Conference (Vol. 2, pp. 1178–1181). Birmingham, UK.

  11. Qi Y., Kobayashi H., Suda H. (2006) Analysis of wireless geolocation in a non-line-of-sight environment. IEEE Transactions on Wireless Communications 5(3): 672–681

    Article  Google Scholar 

  12. Miao H., Yu K., Juntti M. J. (2007) Positioning for NLOS propagation: Algorithm derivation, Cramer-Rao bounds. IEEE Transactions on Vehicular Technology 56(5): 2568–2580

    Article  Google Scholar 

  13. Wylie, M. P., & Holtzman, J. (1996). The nonline of sight problem in mobile location estimation. In Proceedings of IEEE International Conference on Universal Personal Communications (Vol. 2, pp. 827–831).

  14. Le, B. L., Ahmed, K., & Tsuji, H. (2003). Mobile location estimatior with NLOS mitigation using Kalman filtering. In IEEE Wireless Communications and Networking Conference (Vol. 3, pp. 1969–1973). New Orleans, USA.

  15. Chen B.-S., Yang C.-Y., Liao F.-K., Liao J.-F. (2009) Mobile location estimator in a rough wireless environment using extended Kalman-based IMM, data fusion. IEEE Transactions on Vehicular Technology 58(3): 1157–1169

    Article  Google Scholar 

  16. Morelli C., Nicoli M., Rampa V., Spagnolini U. (2007) Hidden Markov models for radio localization in mixed LOS/NLOS conditions. IEEE Transactions on Signal Processing 55(4): 1525–1542

    Article  MathSciNet  Google Scholar 

  17. Nicoli M., Morelli C., Rampa V. (2008) A jump Markov particle filter for localization of moving terminals in multipath indoor scenarios. IEEE Transactions on Signal Processing 56(8): 3801–3809

    Article  MathSciNet  Google Scholar 

  18. Chen L., Wu L. (2009) Mobile positioning in mixed LOS/NLOS conditions using modified EKF banks and data fusion method. IEICE Transactions on Communications EB92(4): 1318–1325

    Article  Google Scholar 

  19. (1996). “Revision of the commissions rules to insure compatibility with enhanced 911 emergency calling systems”. Federal Communication Commission (FCC), Washington, DC, Technical Report RM-8134. [Online]. Available: http://www.fcc.gov.

  20. Bar-Shalom Y., Li R. X., Kirubarajan T. (2001) Estimation with applications to tracking and navigation, theory algorithms and software. Wiley, New York

    Book  Google Scholar 

  21. Chen, L., & Wu, L. (May 2009). Mobile localization with NLOS mitigation using improved Rao-Blackwellized particle filtering algorithm. In Proceedings of 13th IEEE International Symposium on Consumer Electronics, Kyoto, Japan.

  22. Chen, L., Wu, L., & Piché, R. (August 2009). Posterior Cramer-Rao bounds for mobile tracking in mixed LOS/NLOS conditions. In Proceedings of 17th European Signal Processing Conference (pp. 90–94). Glasgow, Scotland.

  23. Molisch A. F., Asplund H., Heddergott R. (2006) The COST259 directional channel model—Part I: Overview and methodology. IEEE Transactions on Wireless Communications 5(12): 3421–3433

    Article  Google Scholar 

  24. Ristic B., Arulampalam S., Gordon N. (2004) Beyond the Kalman filter, particle filters for tracking applications. Artech House, Boston, London

    MATH  Google Scholar 

  25. Doucet, A., de Freitas, N., Murphy, K., & Russell, S. (2000). Rao-Blackwellized particle filtering for dynamic Bayesian networks. In Proceedings of UAI2000 (pp. 176–183).

  26. Chen R., Liu J. (2000) Mixture Kalman filters. Journal of the Royal Statistics Society Series B 62: 493–508

    Article  MATH  Google Scholar 

  27. Arulampalam M. S., Maskell S., Gordon N., Clapp T. (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 50(2): 174–188

    Article  Google Scholar 

  28. Gustafsson F., Gunnarsson F. (2005) Mobile positioning using wireless networks: Possibilities and fundamental limitations based on available wireless network measurements. Signal Processing Magazine, IEEE 22(4): 41–53

    Article  Google Scholar 

  29. Mihaylova L., Angelove D., Honary S., Bull D. R., Canagarajah C. N., Ristic B. (2007) Mobility tracking in cellular networks using particle filtering. IEEE Transactions on Wireless Communications 6(10): 3589–3599

    Article  Google Scholar 

  30. Whyte, H., Yao, B. Y., & Hu, H. (May 1990). Toward a fully decentralized architecture for multi-sensor data fusion. In Proceedings of IEEE International Conference on Robotics and Automation (Vol. 2, pp. 1331–1336). New Jersey, USA.

  31. de Freitas, J. F. G. (2002). Rao-Blackwellized particle filtering for fault diagnosis. In Proceedings of Aerospace Conference (Vol. 4, pp. 1767–1772).

  32. van Trees H. L. (1968) Detection, estimation and modulation theory. Wiley, New York

    MATH  Google Scholar 

  33. Tichavsky P., Muravchik C. H., Nehorai A. (1998) Posterior Cramer-Rao bounds for discrete-time nonlinear filtering. IEEE Transactions on Signal Processing 46(5): 1386–1396

    Article  Google Scholar 

  34. Julier S. J., Uhlmann J. K. (2004) Unscented filtering and nonlinear estimation. Proceedings of the IEEE 92(3): 401–422

    Article  Google Scholar 

  35. Chan Y. T., Ho K. C. (1994) A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing 42(8): 1905–1915

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Ali-Löytty, S., Piché, R. et al. Mobile Tracking in Mixed Line-of-Sight/Non-Line-of-Sight Conditions: Algorithm and Theoretical Lower Bound. Wireless Pers Commun 65, 753–771 (2012). https://doi.org/10.1007/s11277-011-0294-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0294-7

Keywords

Navigation