Skip to main content
Log in

Enhancement to IEEE 802.11 Distributed Coordination Function to Reduce Packet Retransmissions Under Imperfect Channel Conditions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we provide an extended model for analytical analysis of IEEE 802.11 wireless local area networks under noisy wireless channel. A reservation stage is introduced in the Markov chain model to reduce unnecessary retransmissions in the case of transmission failure due to channel error. A lot of work has been carried out to enhance the performance of 802.11 distributed coordination function in the error free channel. Throughput enhancement of 802.11 medium access control protocol under error prone channel was still missing in the available literature. Through the analysis result it is shown that the proposed method significantly improves the performance of the backoff algorithm when the reservation stage is employed in the Markov chain model. The analysis result is validated by using the network simulator tool ns-2. The proposed modifications can be employed in the Markov chain model of any backoff algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, 1999.

  2. Bianchi G. (2000) Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas of Communication 18: 535–547

    Article  Google Scholar 

  3. Qiao D., Choi S., Shin K. G. (2002) Goodput analysis and link adaptation for IEEE 802.11a wireless LANs. IEEE Transactions on Mobile Computing 1: 278–292

    Article  Google Scholar 

  4. Chatzimisios, P., & Boucouvalas, A. C. (2002). Throughput and delay analysis of the IEEE 802.11 protocol. In Proceedings of IEEE international workshop on network appliances, pp. 168–174.

  5. Chatzimisios P., Boucouvalas A. C., Vitsas V. (2003) Influence of channel BER on IEEE 802.11 DCF. IEE Electronic Letters 39: 1687–1689

    Article  Google Scholar 

  6. Latkoski, P., Hadi-velkov, Z., & Popovski, B. (2006). Extended model for performance analysis of nonsaturated IEEE 802.11 DCF in erroneous channel. In Proceedings of international conference on mobile Adhoc and sensor systems, pp. 783–788.

  7. Samhat, A., Altman, Z., & Fourestie, B. (2006). Performance analysis of the IEEE 802.11 DCF with imperfect radio conditions. In Proceedings of international conference on wireless and mobile communications, pp. 27–31.

  8. Choudhury S., Gibson J.D. (2008) Throughput optimization for wireless LAN in the presence of packet error rate constraints. IEEE Communications Letters 12: 11–13

    Article  Google Scholar 

  9. Chatzimisios, P., Boucouvalas, A. C., & Vitsas, V. (2004). Performance analysis of IEEE 802.11 DCF in presence of transmission errors. In Proceedings of IEEE international conference on communication, pp. 3854–3858.

  10. Daneshgaran F., Laddomada M., Mesiti F., Mondin M., Zanolo M. (2008) Saturation throughput analysis of IEEE 802.11 in presence of non ideal transmission channel and capture effects. IEEE Transactions on Communications 56: 1178–1188

    Article  Google Scholar 

  11. Daneshgaran F., Laddomada M., Mesiti F., Mondin M. (2008) Unsaturated throughput analysis of IEEE 802.11 in presence of non ideal transmission channel and capture effects. IEEE Transactions on Wireless Communications 7: 1276–1286

    Article  Google Scholar 

  12. Ni Q., Li T., Turletti T., Xiao Y. (2005) Saturation throughput analysis of error prone 802.11 wireless networks. Wireless Communications and Mobile Computing 5: 945–956

    Article  Google Scholar 

  13. Ergen M., Varaiya P. (2005) Admission control and throughput analysis in IEEE 802.11. Mobile Networks and Applications 10: 705–716

    Article  Google Scholar 

  14. Vishnevsky, V., & Lyakhov, A. (2002). 802.11 LANs: Saturation throughput in presence of noise. In Proceedings of networking conference, pp. 1008–1019.

  15. Lyakhov A., Vishnevsky V. (2005) Comparative study of 802.11 DCF and its modification in the presence of noise. Wireless Networks 11: 729–740

    Article  Google Scholar 

  16. Wu, H., Cheng, S., Peng, Y., long, K., & Ma, J. (2002). IEEE 802.11 distributed coordination function (DCF): Analysis and enhancement. In Proceedings of IEEE international conference on Communications, pp. 605–609.

  17. Kwon, Y., Fang, Y., & Latchman, H. (2003). A novel MAC protocol with fast collision resolution for wireless LANs. In Proceedings of Infocom, pp. 853–862.

  18. Qiao, D., & Shin, K.G. (2003). UMAV: A simple enhancement to the IEEE 802.11 DCF. In Proceedings of international conference on system sciences, pp. 9–14.

  19. Zhang, Q., Sun, B., Gui, C., & Zeng, C. (2008). A new collision resolution mechanism for IEEE 802.11 WLAN. In Proceedings of international conference on computer communication and networks, pp. 1–6.

  20. Xu, D., Sakurai, T., & Vu, H. L. (2008). An analysis of different backoff functions for an IEEE 802.11 WLAN. In Proceedings of IEEE vehicular technology conference, pp. 1–5.

  21. Cali F., Conti M., Gregori E. (2000) IEEE 802.11 protocol: Design and performance evaluation of an adaptive backoff mechanism. IEEE Journal of Selected Areas of Communication 18: 1774–1786

    Article  Google Scholar 

  22. Choi J., Yoo S., Choi S., Kim C. (2005) EBA: An enhancement of the IEEE 802.11 DCF via distributed reservation. IEEE Transactions on Mobile Computing 4: 378–390

    Article  Google Scholar 

  23. Xian Y., Li F.H., Wu K., Leung K., Ni Q. (2006) On optimizing backoff counter reservation and classifying stations for the IEEE 802.11distributed wireless LANs. IEEE Transactions on Parallel and Distributed Systems 17: 713–722

    Article  Google Scholar 

  24. Minooei H., Nojumi H. (2007) Performance evaluation of a new backoff method for IEEE 802.11. Computer Communications 30: 3698–3704

    Article  Google Scholar 

  25. Malone D., Clifford P., Leith D. J. (2007) MAC layer channel quality measurement in 802.11. IEEE Communication Letters 11: 143–145

    Article  Google Scholar 

  26. Pang Q., Leung V.C.M., Liew S. (2006) Improvement of WLAN contention resolution by loss differentiation. IEEE Transactions on Wireless Communications 5: 3605–3615

    Article  Google Scholar 

  27. Pang Q., Liew S. C., Leung V. C. M. (2005) Design of an effective loss-distinguishable MAC protocol for 802.11 WLAN. IEEE Communication Letters 9: 781–783

    Article  Google Scholar 

  28. Senthilkumar T. D., Krishnan A. (2010) Nonsaturation throughput enhancement of IEEE 802.11b distributed coordination function for heterogeneous traffic under noisy environment. International Journal of Automation and Computing 7: 95–104

    Article  Google Scholar 

  29. Haykin S. (1988) Digital communications. Wiley, New York, pp 273–300

    Google Scholar 

  30. Proakis J. G. (2001) Digital communications. McGraw Hill, New York, pp 254–300

    Google Scholar 

  31. The network simulator-ns-2. [Online]. Available: http://www.isi.edu/nsnam/ns/, [Accessed January 26, 2010].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanasekaran Senthilkumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senthilkumar, D., Krishnan, A. Enhancement to IEEE 802.11 Distributed Coordination Function to Reduce Packet Retransmissions Under Imperfect Channel Conditions. Wireless Pers Commun 65, 929–953 (2012). https://doi.org/10.1007/s11277-011-0320-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0320-9

Keywords

Navigation