Skip to main content
Log in

Biological Swarm Intelligence Based Opportunistic Resource Allocation for Wireless Ad Hoc Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Particle swarm optimization (PSO) is one of the most important biological swarm intelligence paradigms. However, the standard PSO algorithm can easily get trapped in the local optima when solving complex multimodal problems. In this paper, an improved adaptive particle swarm optimization (IAPSO) is presented. Based on IAPSO, a joint opportunistic power and rate allocation (JOPRA) algorithm is proposed to maximize the sum of source utilities while minimize power allocation for all links in wireless ad hoc networks. It is shown that the proposed JOPRA algorithm can converge fast to the optimum and reach larger total data rate and utility while less total power is consumed by comparison with the original APSO. This thanks to the dynamic change of the maximum movement velocity of the particles, the use of the modified replacement procedure in constraint handling, and the consideration of the state of the optimization run and the population diversity in stopping criteria. Numerical simulations further verify that our algorithm with the IAPSO outperforms that with the original APSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alawieh B., Assi C. M., Ajib W. (2008) Distributed correlative power control schemes for mobile ad hoc networks using directional antennas. IEEE Transactions on Vehicular Technology 57(3): 1733–1744

    Article  Google Scholar 

  2. Biswal B., Dash P. K., Panigrahi B. K. (2009) Power quality disturbance classification using fuzzy c-means algorithm and adaptive particle swarm optimization. IEEE Transactions on Industrial Electronic 56(1): 212–220

    Article  Google Scholar 

  3. Chaturvedi K. T., Pandit M., Srivastava L. (2009) Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch. Electrical Power and Energy Systems 31: 249–257

    Article  Google Scholar 

  4. Cho H. Y., Andrews J. G. (2009) Resource-redistributive opportunistic scheduling for wireless systems. IEEE Transactions on Wireless Communications 8(7): 3510–3522

    Article  Google Scholar 

  5. Coello C. A. (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(11–12): 1245–1287

    Article  MathSciNet  MATH  Google Scholar 

  6. del Valle Y., Venayagamoorthy G. K., Mohagheghi S., Hernandez J.-C.s, Harley R. G. (2008) Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation 12(2): 171–1950

    Article  Google Scholar 

  7. Demarcke P., Rogier H., Goossens R., Jaeger P. D. (2009) Beamforming in the presence of mutual coupling based on constrained particle swarm optimization. IEEE Transactions on Antennas and Propagation 57(6): 1655–1666

    Article  Google Scholar 

  8. Eberhart R., Shi Y., Kennedy J. (2001) Swarm intelligence. San Morgan Kaufmann, Mateo, CA

    Google Scholar 

  9. Fan, H., Shi, Y. (2001). Study on Vmax of particle swarm optimization. In Proceedings of workshop on particle swarm optimization, Purdue School of Engineering and Technology, Indianapolis, IN.

  10. Gaing Z.-L. (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Transactions on Power Systems 18(3): 1187–1195

    Article  Google Scholar 

  11. Hazra J., Sinha A. K. (2007) Congestion management using multiobjective particle swarm optimization. IEEE Transactions on Power System 22(4): 1726–1734

    Article  Google Scholar 

  12. Huang W. L., Letaief K. B. (2007) Cross-layer scheduling and power control combined with adaptive modulation for wireless ad hoc networks. IEEE Transactions on Communications 55(4): 728–739

    Article  Google Scholar 

  13. Jäntti R., Kim S.-L. (2006) Joint data rate and power allocation for lifetime maximization in interference limited ad hoc networks. IEEE Transactions on wireless communications 5(5): 1086–1094

    Article  Google Scholar 

  14. Kennedy, J. (July, 1999). Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. In Proceedings of the IEEE congress on evolutionary computation, Vol. 3, pp. 1931–1938.

  15. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural networks, Perth, Australia, pp. 1942–1948.

  16. Kennedy, J., & Mendes, R. (May, 2002). Population structure and particle swarm performance. In Proceedings of the IEEE congress on evolutionary computation, 2, 1671–1676

  17. Lee J.-W., Mazumdar R. R., Shroff N. B. (2006) Opportunistic power scheduling for dynamic multi-server wireless systems. IEEE Transactions on Wireless Communications 5(6): 1506–1515

    Article  Google Scholar 

  18. Lee J.-W., Mazumdar R. R., Shroff N. B. (2007) Joint opportunistic power scheduling and end-to-end rate control for wireless ad hoc networks. IEEE Transactions on Vehicular Technology 56(2): 801–809

    Article  Google Scholar 

  19. Lin X., Shroff N. B. (2006) Utility maximization for communication networks with multipath routing. IEEE Transaction on Automatic Control 51(5): 766–781

    Article  MathSciNet  Google Scholar 

  20. Liu X., Chong E. K. P., Shroff N. B. (2001) Opportunistic transmission scheduling with resource sharing constraints in wireless networks. IEEE Journal on Selected Areas in Communications 19(10): 2053–2065

    Article  Google Scholar 

  21. Papandriopoulos J., Dey S., Evans J. (2008) Optimal and distributed protocols for cross-layer design of physical and transport layers in MANETs. IEEE/ACM Transactions on Networking 16(6): 1392–1405

    Article  Google Scholar 

  22. Park J.-B., Lee K.-S., Shin J.-R., Lee K. Y. (2005) A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Transactions on Power Systems 20(1): 34–42

    Article  Google Scholar 

  23. Pulido, G. T., & Coello, C. A. (2004). A constraint-handling mechanism for particle swarm optimization. In Proceedings of the IEEE congress on evolutionary computation, Portland, OR, Vol. 2, pp. 1396–1403.

  24. Qu Q., Milstein L. B., Vaman D. R. (2008) Cognitive radio based multi-user resource allocation in mobile ad hoc networks using multi-carrier CDMA modulation. IEEE Journal on Selected Areas in Communications 26(1): 70–82

    Article  Google Scholar 

  25. Ratnaweera A., Halgamuge S. K., Watson H. C. (2004) Self-organizing hierarchical particle swarm optimizer with time varying acceleration coefficients. IEEE Transactions on Evolutionary Computation 8(3): 240–255

    Article  Google Scholar 

  26. Shen M., Zhao D. M. (2009) Opportunistic link scheduling for multihop wireless networks. IEEE Transactions on Wireless Communications 8(1): 234–244

    Article  Google Scholar 

  27. Shi, Y., & Eberhart, R. (1999). Empirical study of particle swarm optimization. In Proceedings of the IEEE congress on evolutionary computation, Vol. 3, pp. 1945–1950.

  28. Ting T. O., Rao M. V. C., Loo C. K. (2006) A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Transactions on Power Systems 21(1): 411–418

    Article  Google Scholar 

  29. Zhan Z.-H., Zhang J., Liu Y., Chung H.S.-H. (2009). Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(6):1362–1381

    Article  Google Scholar 

  30. Zielinski K., Laur R. (2007) Stopping criteria for a constrained single-objective particle swarm optimization algorithm. Informatica 31: 51–59

    MATH  Google Scholar 

  31. Zielinski, K., Weitkemper, P., Laur, R., Kammeyer, K.-D. (2006). Parameter study for differential evolution using a power allocation problem including interference cancellation. In Proceedings of the IEEE congress on evolutionary computation, Vancouver, BC, Canada, pp. 6748–6755.

  32. Zielinski K., Weitkemper P., Laur R., Kammeyer K.-D. (2009) Optimization of power allocation for interference cancellation with particle swarm optimization. IEEE Transactions on Evolutionary Computation 13(1): 128–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bochu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Wang, B. Biological Swarm Intelligence Based Opportunistic Resource Allocation for Wireless Ad Hoc Networks. Wireless Pers Commun 66, 629–649 (2012). https://doi.org/10.1007/s11277-011-0355-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0355-y

Keywords

Navigation