Skip to main content
Log in

A Novel Technique for Wideband Spectrum Sensing in Cognitive Radio Through Phase-Field Segmentation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The problem of wideband spectrum sensing for detecting vacant frequency subbands for opportunistic cognitive radio is investigated. This is achieved through the identification of irregularities (discontinuities) in the estimated power spectrum density. In this paper, we propose a new mathematical framework based on phase-field segmentation method, usually used in the image processing community. We show that by properly setting the parameters of the phase-field function, robustness to fluctuations of the edge threshold value (due to estimation errors for instance) used for spectrum sensing can be achieved. Our numerical results indicate that the sensing accuracy is improved, while the computational complexity is reduced, when compared to conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Haykin S. (2005) Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 23(2): 201–220

    Article  Google Scholar 

  2. Zhang W., Letaief K. B. (2008) Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks. IEEE Transactions on Wireless Communications 7: 4761–4766

    Article  Google Scholar 

  3. Letaief K. B., Zhang W. (2009) Cooperative communications for cognitive radio networks. IEEE Proceedings Munich (Germany) 97(5): 878–893

    Google Scholar 

  4. Ghasemi, A., & Sousa, E. S. (2005). Collaborative spectrum sensing for opportunistic access in fading environments. In Proceedings of the IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN), Baltimore.

  5. Cui Z., Sayed A. (2008) Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing 2: 28–40

    Article  Google Scholar 

  6. Zhao, T., & Zhao, Y. (2009). A new cooperative detection technique with malicious user suppression. In IEEE Proceedings of the international conference on communications (ICC).

  7. Sahai, A., & Cabric, D. (2005). A tutorial on spectrum sensing: Fundamental limits and practical challenges. In Proceedings of the IEEE symposium on new frontiers dynamic spectrum access networks (DySPAN), Baltimore, MD, November, 2005.

  8. Sadough, S. M. S., & Jaffrot, E. (2005). A wavelet packet based model for an ultra-wideband propagation channel. In Proceedings of the European conference on propagation and systems (ECPS).

  9. Sadough S.M.S., Ichir M.M., Duhamel P., Jaffrot E. (2009) Wavelet-based semiblind channel estimation for ultrawideband OFDM systems. IEEE Transactions on Vehicular Technology 15(3): 1302–1314

    Article  Google Scholar 

  10. Sadough S.M.S., Ichir M.M., Duhamel P., Jaffrot E. (2008) Ultrawideband OFDM channel estimation through a wavelet based EM-MAP algorithm. European Transactions on Telecommunications 19(7): 761–771

    Article  Google Scholar 

  11. Tian, Z., & Giannakis, G. B. (2006). A wavelet approach to wideband spectrum sensing for cognitive radios. In Proceedings of international conference on cognitive radio oriented wireless networks and communications.

  12. Hur Y., Park J., Woo, W., Lim, K., Lee, K., & Laskar, J. (2006). A wideband analog multi-resolution spectrum sensing (MRSS) technique for cognitive radio (CR) systems. In Proceedings of the IEEE international symposium on circuits systems (ISCAS), Island of Kos, Greece (pp. 4090–4093).

  13. Tianhang G., Kun S., Yingzhe L., Pengpeng L., Ping W. (2010) A multi-resolution spectrum sensing (MRSS) scheme under measurement-based channel models in cognitive radio. Journal of Electronics (China) 27(5): 639–646

    Article  Google Scholar 

  14. Liu, D., Li, C., Liu, J., & Long, K. (2010). A novel signal separation algorithm for wideband spectrum sensing in cognitive networks. In Proceedings of the IEEE global telecommunications conference (GLOBECOM).

  15. Quan Z., Cui S., Sayed A. H., Poor H. V. (2009) Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Transactions on Signal Processing 57(3): 1128–1140

    Article  Google Scholar 

  16. Tian, Z., & Giannakis, G. B. (2007). Compressed sensing for wideband cognitive radios. In IEEE international conference on acoustics, speech and signal processing (ICASSP).

  17. Polo, Y. L., Wang Y., Pandharipande, A., & Leus, G. (2009). Compressive wideband spectrum sensing. In Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2337–2340).

  18. Chen, X., Zhao, L., & Li, J. (2009). A modified spectrum sensing method for wideband cognitive radio based on compressive sensing. In Proceedings of the fourth international conference on communications and networking in China.

  19. Mishali M., Elder C.Y. (2011) Wideband spectrum sensing at sub-nyquist rates. IEEE Signal Processing Magazine 28(4): 102–108

    Article  Google Scholar 

  20. Zhang Z., Han Z., Li H., Yang D., Pei C. (2011) Belief propagation based cooperative compressed spectrum sensing in wideband cognitive radio networks. IEEE Transactions on Wireless Communications 10(9): 3020–3031

    Article  Google Scholar 

  21. Mumford D., Shah J. (1989) Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42: 577–685

    Article  MathSciNet  MATH  Google Scholar 

  22. Ambrosio L., Tortelli V. M. (1990) Approximation of functionals depending on jumps by elliptic functionals via gammad-convergence. Communications on Pure and Applied Mathematics 43: 999–1036

    Article  MathSciNet  MATH  Google Scholar 

  23. Ambrosio L., Tortelli V. M. (1992) On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6(7): 105–123

    MathSciNet  MATH  Google Scholar 

  24. Courant R., Hilbert D. (1989) Methods of mathematical physics. Wiley, NJ

    Book  Google Scholar 

  25. Solin P. (2005) Partial differential equations and the finite element method. Wiley, London

    Google Scholar 

  26. Bourdin B., Chambolle A. (2000) Implementation of an adaptive finite-element approximation of the Mumford–Shah functional. Numerische Mathematic 85(4): 609–646

    Article  MathSciNet  MATH  Google Scholar 

  27. Bourdin B. (1999) Image segmentation with a finite element method. Mathematical Modelling and Numerical Analysis 33: 229–244

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad-Sajad Sadough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eslami, M., Sadough, S.MS. A Novel Technique for Wideband Spectrum Sensing in Cognitive Radio Through Phase-Field Segmentation. Wireless Pers Commun 68, 115–130 (2013). https://doi.org/10.1007/s11277-011-0442-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0442-0

Keywords

Navigation