Skip to main content
Log in

Opportunistic Relaying for MIMO Amplify-and-Forward Cooperative Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We consider a wireless relay network with multiple antenna terminals over Rayleigh fading channels, and apply distributed space-time coding (DSTC) in amplify-and-forward (A&F) mode. The A&F scheme is used in a way that each relay transmits a scaled version of the linear combination of the received symbols. It turns out that, combined with power allocation in the relays, A&F DSTC results in an opportunistic relaying scheme, in which only the best relay is selected to retransmit the source’s space-time coded signal. Furthermore, assuming the knowledge of source-relay CSI at the source node, we design an efficient power allocation which outperforms uniform power allocation across the source antennas. Next, assuming M-PSK or M-QAM modulations, we analyze the performance of the proposed cooperative diversity transmission schemes in a wireless relay networks with the multiple-antenna source and destination. We derive the probability density function (PDF) of the received SNR at the destination. Then, the PDF is used to determine the symbol error rate (SER) in Rayleigh fading channels. We derived closed-form approximations of the average SER in the high SNR scenario, from which we find the diversity order of system R min{N s , N d }, where R, N s , and N d are the number of the relays, source antennas, and destination antennas, respectively. Simulation results show that the proposed system obtain more than 6 dB gain in SNR over A&F MIMO DSTC for BER 10−4, when R = 2, N s  = 2, and N d  = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sendonaris A., Erkip E., Aazhang B. (2003) User cooperation diversity. Part I. System description. IEEE Transactions Communications 51(11): 1927–1938

    Article  Google Scholar 

  2. Sendonaris A., Erkip E., Aazhang B. (2003) User cooperation diversity. Part II. Implementation aspects and performance analysis. IEEE Transactions on Communications 51: 1939–1948

    Article  Google Scholar 

  3. Laneman, J. N., & Wornell, G. (2000). Energy-efficient antenna sharing and relaying for wireless networks. In Proc. Wireless Communications Networking Conf. (pp. 7–12). Chicago, IL.

  4. Laneman, J. N., & Wornell, G. (2002). Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. In IEEE GLOBECOM 2002 (Vol. 1, pp. 77–81). Taipei, Taiwan ROC.

  5. Nabar R. U., Bölcskei H., Kneubuhler F. W. (2004) Fading relay channels: Performance limits and space-time signal design. IEEE Journal on Selected Areas in Communications 22(6): 1099–1109

    Article  Google Scholar 

  6. Hua, Y., Mei, Y., & Chang, Y. (2003). Wireless antennas-making wireless communications perform like wireline communications. In IEEE AP-S Topical Conf. on Wireless Comm. Tech. Honolulu, Hawaii.

  7. Jing Y., Hassibi B. (2006) Distributed space-time coding in wireless relay networks. IEEE Transactions on Wireless Communications 5(12): 3524–3536

    Article  Google Scholar 

  8. Jing Y., Jafarkhani H. (2007) Using orthogonal and quasi-orthogonal designs in wireless relay networks. IEEE Transactions on Information Theory 53(11): 4106–4118

    Article  MathSciNet  Google Scholar 

  9. Maham B., Hjørungnes A., Abreu G. (2009) Distributed GABBA space-time codes in amplify-and-forward relay networks. IEEE Transactions on Wireless Communications 8(4): 2036–2045

    Article  Google Scholar 

  10. Rajan, G. S., & Rajan, B. S. (2007). Distributed space-time codes for cooperative networks with partial CSI. In Proc. IEEE Wireless Communications and Networking Conference (WCNC) (pp. 902–906). Hong Kong, China.

  11. Jing, Y., Hassibi, B. (2005). Cooperative diversity in wireless relay networks with multiple-antenna nodes. In IEEE int. symp. inform. theory, Adelaide, Australia.

  12. Peters S., Heath R. W. (2008) Selection cooperation in multi-source cooperative networks. IEEE Signal Processing Letters 15: 421–424

    Article  Google Scholar 

  13. Oggier F., Hassibi B. (2008) An algebraic coding scheme for wireless relay networks with multiple-antenna nodes. IEEE Transactions on Signal Processing 56(7): 2957–2966

    Article  MathSciNet  Google Scholar 

  14. Hong Y. -W., Huang W. -J., Chiu F. -H., Kuo C. -C. J. (2007) Cooperative communications in resource-constrained wireless networks. IEEE Signal Processing Magazine 24: 47–57

    Article  Google Scholar 

  15. Maham, B., & Hjørungnes, A. (2008). Minimum power allocation in SER constrained amplify-and-forward cooperation. In Proc. IEEE Vehicular Technology Conference (VTC 2008-Spring) (pp. 2431–2435). Singapore.

  16. Chen M., Serbetli S., Yener A. (2008) Distributed power allocation strategies for parallel relay networks. IEEE Transactions on Wireless Communications 7(2): 552–561

    Article  Google Scholar 

  17. Host-Madsen A., Zhang J. (2005) Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory 51(6): 2020–2040

    Article  MathSciNet  Google Scholar 

  18. Brown, D. R., (2004). Energy conserving routing in wireless adhoc networks. In Proc. Asilomar Conf. Signals, Syst. Computers. Monterey, CA, USA.

  19. Reznik A., Kulkarni S.R., Verdú S. (2004) Degraded Gaussian multirelay channel: Capacity and optimal power allocation. IEEE Transactions on Information Theory 50(12): 3037–3046

    Article  Google Scholar 

  20. Hansa M. O., Alouini M. -S. (2004) Optimal power allocation for relayed transmissions over Rayleigh-fading channels. IEEE Transactions on Wireless Communications 3(6): 1999–2004

    Article  Google Scholar 

  21. Dohler M., Gkelias A., Aghvami H. (2004) Resource allocation for FDMA-based regenerative multihop links. IEEE Transactions on Wireless Communications 3(6): 1989–1993

    Article  Google Scholar 

  22. Luo, J., Blum, R. S., Cimini, L. J., Greenstein, L. J., & Haimovich, A. M. (2005). Link-failure probabilities for practical cooperative relay networks. In Proc. IEEE 61st Veh. Technol. Conf., Spring (pp. 1489–1493).

  23. Lin, Z., & Erkip, E. (2005). Relay search algorithms for coded cooperative systems. In Proc. IEEE Global Telecommun. Conf. (pp. 1314–1319)

  24. Zheng, H., Zhu, Y., Shen, C., & Wang, X. (2005). On the effectiveness of cooperative diversity in ad hoc networks: A MAC layer study. In IEEE Int. Conf. Acoustics, Speech, Signal Processing (pp. 509–512).

  25. Bletsas A., Khisti A., Reed D. P., Lippman A. (2006) A simple cooperative method based on network path selection. IEEE Journal on Selected Areas in Communications 24(3): 659–672

    Article  Google Scholar 

  26. Bletsas A., Shin H., Win M. (2007) Outage optimality of amplify-and-forward opportunistic relaying. IEEE Communications Letters 11: 261–263

    Article  Google Scholar 

  27. Zhao Y., Adve R., Lim T. J. (2006) Symbol error rate of selection amplify-and-forward relay systems. IEEE Communications Letters 10(11): 757–759

    Article  Google Scholar 

  28. Wang Z., Giannakis G. (2003) A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications 51(8): 1389–1398

    Article  Google Scholar 

  29. Simon M. K., Alouini M. -S. (2000) Digital communication over fading channels: A unified approach to performance analysis. Wiley, New York, USA

    Book  Google Scholar 

  30. Maham, B., & Hjørungnes, A. (2010). Orthogonal code design for MIMO amplify-and-forward cooperative networks. In Proc. IEEE Information Theory Workshop (ITW’07), Cairo, Egypt.

  31. Horn R., Johnson C. (1985) Matrix analysis. Cambridge Academic Press, Cambridge UK

    MATH  Google Scholar 

  32. Leon-Garcia A. (1994) Probability and random processes for electrical engineering. Addison-Wesley Publishing Company, Massachusetts, USA

    Google Scholar 

  33. Gradshteyn I. S., Ryzhik I. M. (1996) Table of integrals, series, and products. Academic, San Diego, USA

    MATH  Google Scholar 

  34. Abramowitz M., Stegun I. A. (1972) Handbook of mathematical functions. Dover Publications, New York, USA

    MATH  Google Scholar 

  35. Jafarkhani H. (2005) Space-Time coding theory and practice. Cambridge Academic Press, Cambridge, UK

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Maham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maham, B., Hjørungnes, A. Opportunistic Relaying for MIMO Amplify-and-Forward Cooperative Networks. Wireless Pers Commun 68, 1067–1091 (2013). https://doi.org/10.1007/s11277-011-0499-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0499-9

Keywords

Navigation