Skip to main content
Log in

CRLB for DOA Estimation in Gaussian and Non-Gaussian Mixed Environments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The determination of Cramer-Rao lower bound (CRLB) as an optimality criterion for the problem of Direction-of-arrival (DOA) estimation is a very important issue. Several CRLBs on DOA estimation have been derived for Gaussian noise. However, a practical channel is affected by not only Gaussian background noise but also non-Gaussian noise such as impulsive interference. This paper derives the deterministic CRLB for Gaussian and non-Gaussian mixed environments. Since non-parametric kernel method is used to build the probability density function (PDF) of non-Gaussian noise, the CRLB derived is suitable for various noise distributions with or without symmetric PDF. The relationship between the CRLB for Gaussian noise and the proposed CRLB is also investigated. Theoretical analysis shows that the proposed CRLB provides a unified representation for both the cases of Gaussian and mixed environments. Computer simulations are included to verify the derived CRLB in different noise environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kadota, T. (1991). Spatial statistics and digital imaging analysis (pp. 147–157). Washington, DC: National Academy, ch. Spatial Signal Processing in Radars and Sonars.

  2. Hines E. L., Leeson M. S., Ramon M. M., Pardo M., Llobet E., Iliescu D. D., Yang J. (2008) Intelligent systems: Techniques and applications. Shaker, Maastricht, Germany

    Google Scholar 

  3. Kay S. M. (1993) Fundamentals of statistical signal processing: Estimation theory. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  4. Gershman B., Stoica P., Pesavento M., Larsson E. (2002) The stochastic Cramér-Rao bound for direction estimation in unknown noise fields. IEE Proceedings-Radar, Sonar and Navigation 149(1): 2–8

    Article  Google Scholar 

  5. Stoica P., Nehorai A. (1989) MUSIC, maximum likelihood and Cramér-Rao bound. IEEE Transactions on Acoustics, Speech, and Signal Processing 37(5): 720–741

    Article  MathSciNet  MATH  Google Scholar 

  6. Ye H., DeGroat R. D. (1995) Maximum likelihood DOA estimation and asymptotic Cramér-Rao bounds for additive unknown colored noise. IEEE Transactions on Signal Processing 43(4): 938–949

    Article  Google Scholar 

  7. Vorobyov S. A., Gershman A. B., Wong K. M. (2005) Maximum likelihood direction of arrival estimation in unknown noise fields using sparse sensor arrays. IEEE Transactions on Signal Processing 53(1): 34–43

    Article  MathSciNet  Google Scholar 

  8. Weiss A. J., Friedlander B. (1993) On the Cramér-Rao bound for direction finding of correlated sources. IEEE Transactions on Signal Processing 41: 495–499

    Article  Google Scholar 

  9. Stoica P., Larsson E. G., Gershman A. B. (2001) The stochastic CRB for array processing: A textbook derivation. IEEE Signal Processing Letters 8(5): 148–150

    Article  Google Scholar 

  10. Middleton D. (1973) Man-made noise in urban environments and transportation systems: Models and measurement. IEEE Transactions on Communications COM-21(11): 1232–1241

    Article  Google Scholar 

  11. Lee M., Park J. Y., Katkovnik V., Itoh T., Kim Y. H. (2007) Adaptive robust DOA estimation for a 60-GHz antenna-array system. IEEE Transactions on Vehicular Technology 56(5): 3231–3237

    Article  Google Scholar 

  12. Zhang Y., Wan Q., Zhao H. P., Yang W. L. (2007) Support vector regression for basis selection in Laplacian noise environment. IEEE Signal Processing Letters 14(11): 871–874

    Article  Google Scholar 

  13. Nikias C. L., Shao M. (1995) Signal processing with alpha-stable distributions and applications. Wiley, New York

    Google Scholar 

  14. Kozick R. J., Sadler B. M. (2000) Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures. IEEE Transactions on Signal Processing 48(12): 3520–3535

    Article  MathSciNet  Google Scholar 

  15. Middleton, D., & Spaulding, A. D. (1993). In H. V. Poor, E. Thomas (Eds.), Advances in statistical signal processing, signal detection. Greenwich, CT: JAI.

  16. Stankovic L., Ivanovic V. (1997) Further results on the minimum variance time-frequency distribution kernels. IEEE Transactions on Signal Processing 45(6): 1650–1655

    Article  Google Scholar 

  17. Djurovic I., Lukin V. V. (2006) Robust DFT with high breakdown point for complex-valued impulse noise environment. IEEE Signal Processing Letters 13(1): 25–28

    Article  Google Scholar 

  18. Scott D. (1992) Multivariate density estimation: Theory, practice, and visualization. Wiley, Toronto

    Book  MATH  Google Scholar 

  19. Elgammal A., Duraiswami R., Harwood D., Davis L. S. (2002) Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE 90(7): 1151–1163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyan Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Wan, Q. CRLB for DOA Estimation in Gaussian and Non-Gaussian Mixed Environments. Wireless Pers Commun 68, 1673–1688 (2013). https://doi.org/10.1007/s11277-012-0544-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0544-3

Keywords

Navigation