Skip to main content
Log in

Joint IR-UWB Power Spectral Lines and Interference Suppression Based on Coded Auxiliary Independent Signaling in Presence of Pulse Attenuation and Timing Jitter

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper deals with spectral shaping problem in impulse radio ultra-wideband systems based on coded auxiliary independent signaling (AIS), as a modified version of transmitted-reference approach. In this manuscript, the main contribution includes a unified theoretical framework for spectral analysis which is, not only able to address all effective parameters in the emergence of spectral lines and coexistence issues, but also provides a convex optimization based method. This can produce AIS-aided signals using random process characteristics as optimization variables. In particular, the specific novelty insights of this paper are as follows: (i) to propose a new signal model, where each transmitted symbol is represented by a preamble AIS pulse followed by a set of transmitted data pulses that are synthesized in accordance with a codeword design and within this context, the preamble signal is designed to eliminate spectral lines via an adaptive monitoring of data-stream statistics as the optimal policy; (ii) to exploit the proposed spectral optimization strategies to maximize spectral flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Federal Communications Commission: (2002) Revision of Part 15 of the commissions rules regarding ultra-wideband transmission systems: First report and order. ET-Docket, Washington, DC, pp 98–153

    Google Scholar 

  2. Nekoogar F. (2005) Ultra-wideband communications: Fundamentals and applications. Prentice Hall, New York

    Google Scholar 

  3. Nikookar H., Prasad R. (2009) Introduction to ultra wideband for wireless communications. Springer, The Netherlands

    Google Scholar 

  4. Chiani, M., & Giorgetti, A. (2009). Coexistence between UWB and narrow-band wireless communication systems. In Proceedings of the IEEE(Vol. 97, No. 2).

  5. Manzi G., Feliziani M., Beeckman P. A., Dijk N. V. (2009) Coexistence between ultra-wideband radio and narrow-band wireless LAN communication systems part I: Modeling and measurement of UWB radio signals in frequency and time. IEEE Transactions on Electromagnetic Compatibility 51(2): 372–381

    Article  Google Scholar 

  6. Hingorani G. D., Hancock J. (1965) A transmitted reference system for communication in random or unknown channels. IEEE Transactions on Communication 13(3): 293–301

    Article  Google Scholar 

  7. Chao Y. L., Scholtz R. A. (2005) Ultra-wideband transmitted reference systems. IEEE Transactions on Vehicular Technology 54(5): 1556–1569

    Article  Google Scholar 

  8. Maggio G. M., Rulkov N., Reggiani L. (2001) Pseudo-chaotic time hopping for UWB impulse radio. IEEE Transactions on Circuits and Systems Part I 48: 1424–1434

    Article  MathSciNet  MATH  Google Scholar 

  9. Hosseini I., Beaulieu N. C. (2009) Bit error rate of TH-BPSK UWB receivers in multiuser interference. IEEE Transactions on Wireless Communications, 8(10): 4916–4921

    Article  Google Scholar 

  10. Domenicali D., Giancola G., Benedetto M. G. (2006) Fluid coding and coexistence in ultra wideband networks. Mobile Networks and Applications 11: 501–508

    Article  Google Scholar 

  11. Nakache, Y. P., & Molish, A. F. (2003). Spectral shape of UWB signals-influence of modulation format, multiple access scheme and pulse shape. In IEEE Vehicular Technology Conference (pp. 2510–2514).

  12. Nakache Y. P., Molish A. F. (2006) Spectral shaping of UWB signals for time-hopping impulse radio. IEEE Journal on Selected Areas in Communications 24: 738–744

    Article  Google Scholar 

  13. Reggiani, L., & Maggio, G. M. (2006). Coherent vs. non-coherent detection for orthogonal convolutional modulation: A trade-off analysis. In IEEE International Conference on Ultra-wideband (pp. 43–48).

  14. Ahmadian Z., Lampe L. (2009) Performance analysis of the IEEE 802.15.4a UWB system. UWB system. IEEE Transactions on Communications 57(5): 1474–1485

    Article  Google Scholar 

  15. Zhang H., Gulliver T. A. (2005) Biorthogonal pulse position modulation for time-hopping multiple access UWB communications. IEEE Transactions on Wireless Communications 4(3): 1154–1162

    Article  Google Scholar 

  16. Ramirez-Mireless F. (2001) Performance of ultra-wideband SSMA using time hopping and M-ary PPM. IEEE Journal on Selected Areas in Communications 19: 1186–1196

    Article  Google Scholar 

  17. Proakis J. G. (1995) Digital communications (3rd edn). McGraw-Hill, New York

    Google Scholar 

  18. Hagenauer J. (1998) Rate-compatible punctured convolutional codes (PCPC codes) and their performance. IEEE Transactions on Communications 36: 389–400

    Article  Google Scholar 

  19. Hong, Y. P., & Song, H. Y. (2005). Line spectrum analysis of impulse radio UWB systems using a pulse position modulation. In IEEE International Conference on Communications (ICC) (pp. 2877–2880).

  20. Villarreal-Reyes S., Edwards R. M. (2009) Analysis techniques for the power spectral density estimation of convolutionally coded impulse radio UWB signals subject to attenuation and timing jitter. IEEE Transactions on Vehicular Technology, 58(3): 1355–1374

    Article  Google Scholar 

  21. Wang C., Ma M., Ying R., Yang Y. (2010) Narrowband interference mitigation in DS-UWB systems. IEEE Signal Processing Letters, 17(5): 429–432

    Article  Google Scholar 

  22. Hu, B., & Beaulieu, N. C. (2004). Pulse shaping in UWB Communication systems. In Vehicular Technology Conference (VTC) (pp. 5175–5179).

  23. Wu X., Tian Z., Davidson T. N., Giannakis G. B. (2006) Optimal waveform design for UWB radios. IEEE Transactions on Signal Processing 54(6): 2009–2021

    Article  Google Scholar 

  24. Luo, Z., Gao, H., Liu, Y., & Gao, J. (2004). A new UWB pulse design method for narrowband interference suppression. In IEEE Global Telecommunications Conference (GLOBCOM) (pp. 388–392).

  25. Wang, Y., Dong, X., & Fair, I. J. (2006). A method for spectrum shaping and NBI suppression in UWB communications. In IEEE International Conference on Communications (ICC) (pp. 1476–1481).

  26. Chu X., Murch R. D. (2004) The effect of NBI on UWB time-hopping systems. IEEE Transactions on Wireless Communications 3: 1431–1436

    Article  Google Scholar 

  27. Giorgetti A., Chiani M., Win M. Z. (2005) The effect narrow interference on wideband wireless communication systems. IEEE Transactions on Communications 53(12): 2139–2149

    Article  Google Scholar 

  28. Pinto P., Giorgetti A., Win M. Z., Chiani M. (2009) A stochastic geometry approach to existence in heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications 27(7): 1268–1282

    Article  Google Scholar 

  29. Giorgetti, A. (2010). Interference mitigation technique by sequence design in UWB cognitive radio. In Proceedings of IEEE international work on cognitive radio & advanced spectrum management (CogART), Invited Paper (pp. 1–5).

  30. Wu, Y. A., Molisch, F., Kung, S. Y., & Zhang, J. (2003). Impulse radio pulse shaping for ultra-wide bandwidth (UWB) systems. In Proceedings of IEEE PIMRC(Vol. 1, pp. 877–881)

  31. Wang Y., Dong X., Fair I. J. (2007) Spectrum shaping and NBI suppression in UWB communications. In IEEE Transactions on Wireless Communications 6(5): 1944–1952

    Article  Google Scholar 

  32. Kemeny J. G., Snell J. L. (1960) Finite Markov chains. Van Nostrand, New York

    MATH  Google Scholar 

  33. Romanovsky V. I. (1970) Discrete Markov chains. Wolters-Noordhoff, Groningen

    MATH  Google Scholar 

  34. Sturm J. F. (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 1112: 625–653

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Falahati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panahi, F.H., Falahati, A. Joint IR-UWB Power Spectral Lines and Interference Suppression Based on Coded Auxiliary Independent Signaling in Presence of Pulse Attenuation and Timing Jitter. Wireless Pers Commun 69, 1241–1260 (2013). https://doi.org/10.1007/s11277-012-0632-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0632-4

Keywords

Navigation