Skip to main content
Log in

Developments and Constraints in 802.11-Based Roadside-to-Vehicle Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Vehicular communication has recently become popular for delivering traffic information and broadband services to the commuters. The feasibility of using the opportunistic short interval connections between vehicles and between vehicles and the roadside infrastructure is under scrutiny. The main motivation behind writing this review is that several survey works addressing inter-vehicle communications are available in literature but hardly any survey article on roadside-to-vehicle (R2V) communication is known to the authors. Here, we discuss the latest standards and protocols which can allow the use of already available WLAN infrastructure in the vehicular context. The use of roadside WLAN APs would provide the same services as those envisaged by the intelligent transportation systems using the dedicated roadside base stations. In this paper, we give an overview of the recent developments, limitations, standards and protocols that can facilitate 802.11-based R2V communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bing, B. (2008). Emerging technologies in wireless LANs: Theory, design and deployment. Cambridge University Press, Cambridge.

  2. Pang J., Greebstein B., Kaminsky M., McCoy D., Seshan S. (2009) Wifi-reports: Improving wireless network selection with collaboration. IEEE Transactions on Mobile Computing 9(12): 1713–1731

    Article  Google Scholar 

  3. Yeh, S-S., Hsu, C-C., Shih, T-C., Hsia, J-P., & Hsu, P-L. (2008). Remote control realization of distributed rescue robots via the wireless networks. In Annual conference of the society of instrument and control engineers (SICE) (pp. 2928–2932).

  4. Le L., Festag A., Baldessari R., Zhang W. (2009) Vehicular wireless short-range communication for improving intersection safety. IEEE Communications Magazine 47(11): 104–109

    Article  Google Scholar 

  5. Lee, T-T. (2008). Research on intelligent transportation systems in Taiwan. In 27th Chinese control conference (pp. 18–23).

  6. Wong D. T., Kong P-Y., Liang Y-C. (2009) Wireless broadband networks. Wiley, New York

    Book  Google Scholar 

  7. Tiption, H. F., & Krause, M. (2007). Information security management handbook (6th Ed.). Boston: Auerbach Publications.

  8. International Engineering Consortium (Ed.). (2007). Beyond the quadruple play: Networking, convergence and customer delivery. New York: International Engineering Consortium.

  9. Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009). Disruption model for net-on-roads. Wireless Vitae, pp. 282–287.

  10. Ott, J., & Kutscher, D. (2005). A disconnection-tolerant transport for drive-thru internet environments. In Proceedings of IEEE Infocom.

  11. Nicholson, A. J., & Noble, B. D. (2008). BreadCrumbs: Forecasting mobile connectivity. In 14th Annual international conference on mobile computing and networking (ACM Mobicom) (pp. 46–57).

  12. Hasan S. F., Ding X., Siddique N. H., Chakraborty S. (2011) Measuring disruption in vehicular communications. IEEE Transactions on Vehicular Technology 60(1): 148–159

    Article  Google Scholar 

  13. Efstathiou E. C., Frangoudis P. A., Polyzos G. C. (2010) Controlled Wi-Fi sharing in cities: A decentralized approach relying on indirect reciprocity. IEEE Transactions on Mobile Computing 9(8): 1147–1159

    Article  Google Scholar 

  14. Willke T., Tientrakool P., Maxemchuk N. (2009) A survey of inter-vehicle communication protocols and their applications. IEEE Communications Surveys and Tutorials 11(2): 3–20

    Article  Google Scholar 

  15. Toor Y., Muhlethaler P., Laouiti A., Fortelle A., Mines E. (2008) Vehicle ad hoc networks: Applications and related technical issues. IEEE Communications Surveys and Tutorials 10(3): 74–88

    Article  Google Scholar 

  16. Sichitiu M., Kihl M. (2008) Inter-vehicle communication systems: A survey. IEEE Communications Surveys and Tutorials 10(2): 88–105

    Article  Google Scholar 

  17. Fokum D. T., Frost V. S. (2010) A survey on methods for broadband internet access on trains. IEEE Communications Surveys and Tutorials 12(2): 171–185

    Article  Google Scholar 

  18. Zhang, Y., Zhao, J., & Cao, G. (2007). On scheduling vehicle-roadside data access. In Proceedings of vehicular ad hoc networks (ACM VANET) (pp. 9–18).

  19. Chong, J. W., Hwang, H. Y., Jung, C. Y., & Sung, D. K. (2007). Analysis of throughput in a ZigBee network under the presence of WLAN interference. In International symposium on communications and information technologies (ISCIT) (pp. 1166–1170).

  20. Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009). Femtocell versus WiFi: A survey and comparison of architecture and performance. Wireless Vitae, pp. 916–920.

  21. Kljujic, J. S., & Radivojevic, M. R. (2009). Testing of multimedia content transmission in wireless 802.11n network. In 9th International conference on telecommunication in modern satellite, cable, and broadcasting services (pp. 552–555).

  22. Giuliano R., Monti C., Loreti P. (2008) WiMAX fractional frequency reuse for rural environments. IEEE Wireless Communications 15(3): 60–65

    Article  Google Scholar 

  23. Renda, A., Guerin, S., & Arbak, E. (2009). EU-Turkey assessment negotiations. Center for European Policy Studies (CEPS).

  24. Ahmed, I., & Habibi, D. (2008). A novel mobile WiMAX solution for higher throughput. In IEEE conference on networks (pp. 1–5).

  25. Chou, C.-M., Li, C.-Y., Chien, W.-M., & Lan, K.-C. (2009). A feasibility study on vehicle-to-infrastructure communications: WiFi vs. WiMAX. In 10th International conference on mobile data management (pp. 397–398).

  26. Ott, J., & Kutscher, D. (2007). Internet access for mobile users: From drive-thru internet to delay-tolerant ad-hoc networking. In Mobile ad-hoc networks: From theory to reality, New York: Nova Science Publishers.

  27. Ott J., Kutscher D. (2004) Drive thru internet: IEEE 802.11b for automobile users. IEEE Infocom 1: 373

    Google Scholar 

  28. Gass, R., Scott, J., & Diot, C. (2006). Measurements of in-motion 802.11 networking. In Proceedings of WMCSA 2006 (pp. 69–74).

  29. Gass, R., & Diot, C. (2010). Eliminating backhaul bottlenecks for opportunistically encountered Wi-Fi hotspots. In IEEE Vehicular technology conference.

  30. Eriksson, J., Balakrishnan, H., & Madden, S. (2008). Cabernet: Vehicular content delivery using WiFi. In 14th Annual conference on mobile computing and networking (ACM Mobicom) (pp. 199–210).

  31. Frangiadakis, N., Kuklov, D., & Roussopoulos, N. (2007). PEGASUS: 802.11 connectivity at high speed. In IEEE GLOBECOM Workshops.

  32. Balasubramanian, A., Zhou, Y., Croft, W. B., Levine, B. N., & Venlataramani, A. (2007). Web search from a bus. In ACM MobiCom workshop on challenged networks (ACM CHANTS) (pp. 59–66).

  33. Balasubramanian, A., Mahajan, R., Venkataramani, A., Levine, B. N., & Zahorjan, J. (2008). Interactive WiFi connectivity for moving vehicles. In Proceedings of ACM SIGCOMM 2008 (pp. 427–438).

  34. Jin S., Choi M., Choi S. (2009) Multiple WNIC-based handoff in IEEE 802.11 WLANs. IEEE Communications Letters 13(10): 752–754

    Article  Google Scholar 

  35. Wu, H., Tan, K., Zhang, Y., & Zhang, Q. (2007). Proactive scan: Fast handoff with smart triggers for 802.11 wireless LAN. In Proceedings of IEEE INFOCOM (pp. 749–757).

  36. Chen, X., & Qiao, D. (2010). HaND: Fast handoff wuth null dwell time for IEEE 802.11 networks. Proceedings of IEEE INFOCOM (pp. 1–9).

  37. Chen, Y., Kowalik, K., & Davis, M. (2009). MeshScan: Performance of passive handoff and active handoff. In International conference on wireless communications and signal processing (pp. 1–5).

  38. Mhatre, V., & Papagiannaki, K. (2006). Using smart triggers for improved user performance in 802.11 wireless networks. In ACM international conference on mobile systems, applications and services (ACM MobiSys) (pp. 246–259).

  39. Ramani, I., & Savage, S. (2005). SyncScan: practical fast handoff for 802.11 infrastructure networks. In Proceedings IEEE INFOCOM (pp. 675–684).

  40. Sorensen, P. A., & Taylor, B. D. (2005). Review and synthesis of road-use metering and charging systems: Executive summary. The Fuel Tax and Alternatives for Transportation Funding, Washington, DC: The National Academies Press, pp. 217–231.

  41. COMeSafety http://www.comesafety.org/ (As on August 19, 2009).

  42. Festag, G. A., Noecker, M., Strassberger, A., Lbke, B., Bochow, M., & Torrent-Moreno, S. (2008). NoW—network on wheels: Project objectives, technology and achievements. In 6th International workshop on intelligent transportation.

  43. Briere, D., Hurley, P., & Ferris, E. (2010). Wireless home networking for dummies (4th edn). For Dummies Publishers.

  44. Morgan Y. L. (2010) Notes on DSRC & WAVE standards suite: Its architecture, design, and characteristics. IEEE Communications Surveys and Tutorials 12(4): 504–518

    Article  Google Scholar 

  45. Bilstrup, K., Uhlemann, E., Strom, E. G., & Bilstrup, U. (2008). Evaluation of the IEEE 802.11p MAC method for vehicle-to-vehicle communication. In IEEE vehicular technology conference (pp. 1–5).

  46. Xiang, W., Hang, Y., & Majhi, S. (2008). The design of a wireless access for vehicular environment (WAVE) prototype for intelligent transportation system (ITS) and vehicular infrastructure integration. In IEEE vehicular technology conference (VTC 2008) (pp. 1–2).

  47. Stancil, D., Cheng, L., Henty, B., & Bai, F. (2007). Performance of 802.11p waveforms over the vehicle-to-vehicle channel at 5.9GHz. IEEE 802.11 Task Group p report.

  48. Jiang, D., & Delgrossi, L. (2008). IEEE 802.11p: Towards an international standard for wireless access in vehicular environments. In IEEE vehicular technology conference (VTC Spring 2008) (pp. 2036–2040).

  49. Paul T. K., Ogunfunmi T. (2009) Evolution, insights and challenges of the PHY layer for the emerging ieee 802.11n amendment. IEEE Communications Surveys and Tutorials 11(4): 131–150

    Article  Google Scholar 

  50. Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2010). WLAN data rates achievable from roads in low and high mobility environments. In IEEE international communications conference (ICC) workshops (pp. 1–5).

  51. Coleman, D. D., & Westcott, D. A. (2009). CWNA: Certified wireless network administrator official study guide. Sybex.

  52. Viswanathan, S. (2009). Backward compatibility with legacy devices and operating modes. 802.11n PHY Layer—A tutorial, network systems design line. (As on June 8, 2009).

  53. Petrova, M., Wu, L., Mahonen, P., & Riihijarvi, J. (2007). Interference measurements on performance degradation between colocated IEEE 802.11g/n and IEEE 802.15.4 networks. In Proceedings of IEEE ICN 2007 (pp. 93–98).

  54. Feng-Yi, C., I-Ju, L., Ya-Chun, L., Tin-Yu, W., & Wei-Tsong L. (2010). A pre-registered handoff scheme in IEEE 802.11r wireless local area networks. In International conference on communications and mobile computing (pp. 466–470).

  55. Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2010). On evaluating the latency in handing over to EAP-based WLAN APs from outdoors. In 7th IEEE/IET international symposium on communication systems, networks and digital signal processing (pp. 278–282)

  56. Clancy T. (2008) Secure handover in enterprise WLANs: CAPWAP, HOKEY and IEEE802.11r. IEEE Wireless Communications 15(5): 80–85

    Article  Google Scholar 

  57. Ahmed, H., & Hassanein, H. (2008). A performance study of roaming in wireless local area networks based on IEEE 802.11r. In 24th Biennial symposium on communications (pp. 253–257).

  58. Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2011). Scanning and address allocation delays in vehicular communications. Journal of Wireless Personal Communications (accepted for publication).

  59. Kim, M., Moon, T.-W., & Cho, S.-J. (2009). A study on IEEE 802.21 MIH frameworks in heterogeneous wireless networks. In 11th international conference on advanced communication technology (pp. 242–246).

  60. 802.11u standard website http://www.ieee802.org/11/Reports/tgu_update.htm#BACK .

  61. Wetterwald, M., Buburuzan, T., & Carneiro, G. (2008). Combining MBMS and IEEE 802.21 for on-the-road emergency. In 8th international conference on ITS telecommunications (pp. 434–438).

  62. Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2012). Extended MULE concept for traffic congestion monitoring. Journal of Wireless Personal Communications, 63(1), 65–82.

    Google Scholar 

  63. Asheralieva, A., Erke, T. J., & Kilkki, K. (2009). Traffic characterization and service performance in FON network. In International conference on future information networks (pp. 285–291).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Faraz Hasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasan, S.F., Siddique, N.H. & Chakraborty, S. Developments and Constraints in 802.11-Based Roadside-to-Vehicle Communications. Wireless Pers Commun 69, 1261–1287 (2013). https://doi.org/10.1007/s11277-012-0633-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0633-3

Keywords

Navigation