Skip to main content
Log in

A Maximum Likelihood UWB Localization Algorithm Exploiting Knowledge of the Service Area Layout

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper a method for ultra-wideband (UWB) localization for indoor applications is proposed. Beacons at known locations exchange signals with a tag to the purpose of estimating its position from range measurements. These measurements are accurate only when the ray corresponding to the direct path (DP) from tag to beacon is strong enough. In an UWB indoor environment, however, the DP may be blocked by thick walls or metallic obstacles, giving rise to large range errors. Several methods are available to mitigate this problem, exploiting different degrees of prior information. Techniques exploiting range error models or based on traditional fingerprinting lead to better results than methods that do not require any prior knowledge. We propose a new method that combines the maximum likelihood principle with range error models and special fingerprints. Its performance, assessed by simulation and compared to other techniques, is shown to be superior to traditional fingerprinting in the presence of environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pahlavan K., Li X. (2002) Indoor geolocation science and technology. IEEE Communications Magazine 40(2): 112–118

    Article  Google Scholar 

  2. Pahlavan K., Akgul F. O., Heidari M., Hatami A. (2006) Indoor geolocation in the absence of direct path. IEEE Wireless Communications 13(6): 50–58

    Article  Google Scholar 

  3. Gezici S., Tian Z., Giannakis G. B., Kobayashi H., Molish A. F., Poor H. V. et al (2005) Localization via ultra-wideband radios. IEEE Signal Processing Magazine 22(4): 70–84

    Article  Google Scholar 

  4. IEEE Standard 802.15.4a-2007 Task Group. Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs). Technical report, March 2007.

  5. Sayed A. H., Tarighat A., Khajehnouri N. (2005) Network-based wireless location. IEEE Signal Processing Magazine 25: 24–40

    Article  Google Scholar 

  6. Lee J-Y., Scholtz R. A. (2002) Ranging in a dense multipath environment using an UWB radio link. IEEE Transactions on Selected Areas in Communications 20(9): 1677–1683

    Article  Google Scholar 

  7. Heidari, M., & Pahlavan K. (2007). A new error statistical model for the behavior of ranging errors in TOA-based indoor localization. In Proc. IEEE WCNC, (pp. 2566–2571).

  8. Qi Y., Kobayashi H., Suda H. (2006) On time-of-arrival positioning in a multipath environment. IEEE Transactions on Vehicular Technology 55(5): 1516–1526

    Article  Google Scholar 

  9. Qi Y., Kobayashi H., Suda H. (2006) Analysis of wireless geolocation in a non-line-of-sight environment. IEEE Transactions on Wireless Communications 5(3): 672–681

    Article  Google Scholar 

  10. Bahl, P., & Padmanabhan, V. N. (2000). RADAR: An in-building RF-based user location and tracking system. In Proc. IEEE INFOCOM, (Vol. 2, pp. 775–784). Tel Aviv, Israel.

  11. Steiner C., Wittneben A. (2010) Low complexity location fingerprinting with generalized UWB energy detection receivers. IEEE Transactions on Signal Processing 58(3): 1756–1767

    Article  MathSciNet  Google Scholar 

  12. Alavi B., Pahlavan K. (2006) Modeling of the TOA-based distance measurements error using UWB indoor radio measurements. IEEE Communications Letters 10(4): 275–277

    Article  Google Scholar 

  13. Jourdan, D. B., Dardari, D., & Win, M. Z. (2006). Position error bound for UWB localization in dense cluttered environments. In Proc. international conference on communications, ICC 2006, (Vol. 8, pp. 3705–3710).

  14. Chen, P-C. (1999). A non-line-of-sight error mitigation algorithm in location estimation. In Proc. IEEE wireless communications and networking conference, (pp. 316–320). New Orleans.

  15. Li, X. (2006). An iterative NLOS mitigation algorithm for location estimation in sensor networks. In Proc. International mobile and wireless communications summit, Myconos, Greece.

  16. Casas, R., Marco, A., Guerrero, J. J., & Falco, J. (2006). Robust estimator for non-line-of-sight error mitigation in indoor localization. EURASIP Journal on Applied Signal Processing, 2006, 1–8. doi:10.1155/ASP/2006/43429.

  17. Rousseeuv P. J., Lery A. M. (2003) Robust regression and outlier detection. Wiley, Hoboken

    Google Scholar 

  18. Cong L., Zhuang W. (2005) Nonline-of-sight error mitigation in mobile location. IEEE Transactions on Wireless Communications 4(2): 560–573

    Article  Google Scholar 

  19. Dardari, D., Conti, A., Lien, J., & Win, M. Z. (2008). The effect of cooperation on localization systems using UWB experimental data. EURASIP Journal on Applied Signal Processing, 2008, 1–11. doi:10.1155/2008/513873.

  20. McGuire M., Plataniotis K. N., Venetsanopoulos A. N. (2003) Location of mobile terminals using time measurements and survey points. IEEE Transactions on Vehicular Technology 52(4): 999–1011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Arias-de-Reyna.

Additional information

This work has been supported by the Spanish Government (Ministerio de Ciencia e Innovación, through the Projects CSD2008-00010 COMONSENS of the Consolider-Ingenio 2010 Program and TEC2009-14504-C02-02), by the European Union (FEDER) and by Junta de Andalucía (TIC-155).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias-de-Reyna, E., Mengali, U. A Maximum Likelihood UWB Localization Algorithm Exploiting Knowledge of the Service Area Layout. Wireless Pers Commun 69, 1413–1426 (2013). https://doi.org/10.1007/s11277-012-0642-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0642-2

Keywords

Navigation