Skip to main content

Advertisement

Log in

On the Influence of the Propagation Channel in the Performance of Energy-Efficient Geographic Routing Algorithms for Wireless Sensor Networks (WSN)

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

An Erratum to this article was published on 28 June 2012

Abstract

In this paper, the influence of the features of the propagation channel in the performance of energy-efficient routing algorithms for wireless sensor networks is studied. Although there are a lot of works regarding energy-efficient routing protocols, almost no reference to realistic propagation channel models and influence is made in the literature. Considering that the propagation channel may affect the efficiency of the different energy-efficient routing algorithms, different propagation scenarios are proposed in this work, from the most simplistic free-space propagation model to more complex ones. The latter includes the effects of multipath propagation, shadowing, fading, etc. In addition, spatial diversity transmission/reception models are considered to mitigate the effects of hard propagation fading. Some results are provided comparing the performance of several energy-efficient routing algorithms in different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akyildiz I. F., Su W., Sankarasubramaniam Y., Cayirci E. (2002) Wireless sensor networks: A survey. Computer Networks 38(4): 393–422

    Article  Google Scholar 

  2. Anastasi G., Conti M., Di Francesco M., Passarella A. (2009) Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks 7(3): 537–568

    Article  Google Scholar 

  3. Akkaya K., Younis M. (2005) A survey on routing protocols for wireless sensor networks. Ad Hoc Networks 3(3): 325–349

    Article  Google Scholar 

  4. Akyildiz I. F., Kasimoglu I. H. (2004) Wireless sensor and actor networks: Research challenges. Ad Hoc sNetworks 2: 351–367

    Article  Google Scholar 

  5. Akyildiz I. F., Wang X., Wang W. (2005) Wireless mesh networks: A survey. Computer Networks 47(4): 445–487

    Article  MATH  Google Scholar 

  6. Mauve M., Widmer A., Hartenstein H. (2001) A survey on position-based routing in mobile ad hoc networks. IEEE Network 15(6): 30–39

    Article  Google Scholar 

  7. Peng B., Kemp A. H. (2011) Energy-efficient geographic routing in the presence of localization errors. Computer Networks, 55(3, 21): 856–872

    Article  MATH  Google Scholar 

  8. Mao G., Fidan B., Anderson B. D. O. (2007) Wireless sensor network localization techniques. Computer Networks 51(10): 2529–2553

    Article  MATH  Google Scholar 

  9. Seada, K., Zuniga, M., Helmy, A., & Krishnamachari, B. (2004). Energy-efficient forwarding strategies for geographic routing in lossy wireless sensor networks. In Proceedings of the 2nd international conference on Embedded networked sensor systems (SenSys ’04), New York, NY, USA: ACM (pp. 108–121).

  10. Zorzi M., Casari P., Baldo N., Harris A. (2008) Energy-efficient routing schemes for underwater acoustic networks. IEEE Journal on Selected Areas in Communications 26(9): 1754–1766

    Article  Google Scholar 

  11. Matrouk K., Landfeldt B. (2009) RETT-gen: A globally efficient routing protocol for wireless sensor networks by equalising sensor energy and avoiding energy holes. Ad Hoc Networks 7(3): 514–536

    Article  Google Scholar 

  12. Jin Y., Jo J., Wang L., Kim Y., Yang X. (2008) ECCRA: An energy-efficient coverage and connectivity preserving routing algorithm under border effects in wireless sensor networks. Computer Communications 31(10): 2398–2407

    Article  Google Scholar 

  13. Lattanzi E., Regini E., Acquaviva A., Bogliolo A. (2007) Energetic sustainability of routing algorithms for energy-harvesting wireless sensor networks. Computer Communications 30(14–15): 2976–2986

    Article  Google Scholar 

  14. Abdulla, A., Nishiyama, H., & Kato, N. (2011). Extending the lifetime of wireless sensor networks: A hybrid routing algorithm. Computer Communications. Available online October 15, 2011.

  15. Zorzi M., Rao R. R. (2003) Geographic random forwarding (GeRaF) for ad hoc and sensor networks: Multihop performance. IEEE Transactions on Mobile Computing 2(4): 337–348

    Article  Google Scholar 

  16. Abdallah A. E., Fevens T., Opatrny J., Stojmenovic I. (2010) Power-aware semi-beaconless 3D georouting algorithms using adjustable transmission ranges for wireless ad hoc and sensor networks. Ad Hoc Networks 8(1): 15–29

    Article  Google Scholar 

  17. Papadopoulos, A., Navarra, A., McCann, J. A., & Pinotti, C. M. (2011). VIBE: An energy efficient routing protocol for dense and mobile sensor networks. Journal of Network and Computer Applications. Available online May 24, 2011.

  18. Alotaibi, E., & Mukherjee, B. (2011) A survey on routing algorithms for wireless ad-hoc and mesh networks. Computer Networks. Available online November 15, 2011.

  19. Vazifehdan J., Prasad R. V., Onur E., Niemegeers I. (2011) Energy-aware routing algorithms for wireless ad hoc networks with heterogeneous power supplies. Computer Networks 55(15): 3256–3274

    Article  Google Scholar 

  20. Zhang, H., & Shen, H. (2007). EEGR: Energy-efficient geographic routing in wireless sensor networks. In International Conference on Parallel Processing, ICPP 2007.

  21. Stojmenovic I., Nayak A., Kuruvila J., Ovalle-Martinez F., Villanueva-Pena E. (2005) Physical layer impact on the design and performance of routing and broadcasting protocols in ad hoc and sensor networks. Computer Communications 28(10): 1138–1151

    Article  Google Scholar 

  22. Rappaport T. (2002) Wireless communications: Principles and practice. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  23. Molisch A. F. (2005) Wireless communications. Wiley–IEEE press, London

    Google Scholar 

  24. Goldsmith A. (2004) Wireless communications. Cambridge University Press, Cambridge

    Google Scholar 

  25. Prabhu G. S., Shankar P. M. (2002) Simulation of flat fading using MATLAB for classroom instruction. IEEE Transactions on Education 45(1): 19–25

    Article  Google Scholar 

  26. Pérez Fontán, F., & Mariño Espiñeira, P. (2008). Modeling the wireless propagation channel: A simulation approach with MATLAB. Wiley series on wireless communications and mobile computing.

  27. Gomez-Calero C., Cuellar L., de Haro L., Martinez R. (2011) A 2 × 2 MIMO DVB-T2 system: Design, new channel estimation scheme and measurements with polarization diversity. IEEE Transactions on Broadcasting 57(2): 195–203

    Article  Google Scholar 

  28. Gesbert D., Shafi M., Shiu D. S., Smith P., Naguib A. (2003) From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications 21(3): 281–302

    Article  Google Scholar 

  29. Gomez-Calero, C., Garcia-Garcia, L., de Haro-Ariet, L. (2006). New test-bed for evaluation of antenna and system performance for MIMO systems. In First European Conference on Antennas and Propagation, EuCAP 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Padilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padilla, P., Camacho, J., Maciá-Fernández, G. et al. On the Influence of the Propagation Channel in the Performance of Energy-Efficient Geographic Routing Algorithms for Wireless Sensor Networks (WSN). Wireless Pers Commun 70, 15–38 (2013). https://doi.org/10.1007/s11277-012-0676-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0676-5

Keywords

Navigation