Skip to main content
Log in

Design of Low Power 2.4GHz CMOS Cascode LNA with Reduced Noise Figure for WSN Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a narrowband cascode Low Noise Amplifier (LNA) with shunt feedback is proposed. A typical inductively degenerated cascode LNA can be treated as a Common Source-Common Gate (CS-CG) two stage LNA. The series interstage inductance is connected between CS-CG stages to increase the power gain. An additional inductance which is connected at the gate of CG stage is used to cancel out the parasitic capacitance of CG stage therefore reduces the noise figure of CG stage. The shunt feedback is used to improve the stability and input impedance matching. This configuration provides better input matching, lower noise figure, low power consumption and good reverse isolation. The proposed LNA exhibits the gain of 13 dB, input return loss of −11 dB, noise figure of 2.2 dB and good reverse isolation of −42.8 dB at a frequency of 2.4GHz using TSMC 0.13 μm CMOS technology. It produces gain and noise figure better than conventional cascode LNA. The proposed LNA is biased in moderate inversion region for achieving sufficient gain with low power consumption of 1.5mW at a supply voltage of 1.5V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kluge W., Poegel F., Roller H., Lange M., Ferchland T., Dathe L., Eggert D. (2006) A fully integrated 2.4-GHz IEEE 802.15.4-compliant transceiver for ZigBeeTM applications. IEEE Journal Of Solid-State Circuits 41(12): 2767–2775

    Article  Google Scholar 

  2. Song T., Oh H. S., Yoon E., Hong S. (2007) A low-power 2.4-GHz current-reused receiver front- end and frequency source for wireless sensor network. IEEE Journal of Solid-State Circuits 42(5): 1012–1022

    Article  Google Scholar 

  3. Allstot, D. J., Li, X., & Shekhar, S. (2004). Design considerations for CMOS low noise amplifiers. In Proceedings of IEEE radio frequency integrated circuits (RFIC) symposium (pp. 97–100).

  4. Shaeffer D. K., Lee T. H. (1997) A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE Journal Of Solid-State Circuits 32(5): 745–758

    Article  Google Scholar 

  5. Vinu G., Dalmia S., Swaminathan M. (2004) Design of Integrated Low Noise Amplifiers (LNA) Using Embedded Passives in Organic Substrates. IEEE Transactions on Advanced Packaging 27(1): 79–89

    Google Scholar 

  6. Andreani P., Sjöland H. (2001) Noise optimization of an inductively degenerated CMOS low noise amplifier. IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing 48(9): 835–841

    Google Scholar 

  7. Darabi H., Abidi A. A. (2000) A 4.5 mW 900-MHz CMOS receiver for wireless paging. IEEE Journal of Solid-State Circuits 35(8): 1085–1096

    Article  Google Scholar 

  8. Zhuo W., Li X., Shekhar S., Embabi S. H. K., Pineda de Gyvez J., Allstot D. J., Sanchez-Sinencio E. (2005) A capacitor cross-coupled common-gate low-noise amplifier. IEEE Transactions On Circuits And Systems—II: Express Briefs 52(12): 875–879

    Article  Google Scholar 

  9. Khurram M., Rezaul Hasan S. M. (2012) 3–5 GHz current-reuse g m boosted CG LNA for ultrawideband in 130 nm CMOS. IEEE Transactions on Very Large Scale Integration (Vlsi) Systems 20(3): 400–409

    Article  Google Scholar 

  10. Chang C.-P., Chen J.-H., Wang Y.-H. (2009) A fully integrated 5 GHz low-voltage LNA using forward body bias technology. IEEE Microwave and Wireless Components Letters 19(3): 176–178

    Article  MathSciNet  Google Scholar 

  11. Li C.-M., Li M.-T., He K.-C., Tarng J.-H. (2010) A low-power self-forward-body-bias CMOS LNA for 3–6.5-GHz UWB receivers. IEEE Microwave and Wireless Components Letters 20(2): 100–102

    Article  Google Scholar 

  12. Fu C.-T., Kuo C.-N., Taylor S. S. (2010) Low-noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching. IEEE Transactions on Microwave Theory and Techniques 58(4): 795–806

    Article  Google Scholar 

  13. Weng R.-M., Liu C.-Y., Lin P.-C. (2010) A low-power full-band low-noise amplifier for ultra-wideband receivers. IEEE Transactions on Microwave Theory and Techniques 58(8): 2077–2083

    Article  Google Scholar 

  14. Sasilathaa T., Raja J. (2010) A 1 V, 2.4 GHz low power CMOS common source LNA for WSN applications. International Journal of Electronics and Communication (AEU) 64: 940–946

    Article  Google Scholar 

  15. Lo Y.-T., Kiang J.-F. (2011) Design of wideband LNAs using parallel-to-series resonant matching network between common-gate and common-source stages. IEEE Transactions on Microwave Theory and Techniques 59(9): 2285–2294

    Article  Google Scholar 

  16. Wang S., Huang B.-Z. (2011) A high-gain CMOS LNA For 2.4/5.2-GHz WLAN applications. Progress In Electromagnetics Research C 21: 155–167

    Google Scholar 

  17. Chang P.-Y., Su S.-H., Hsu S. S. H., Cho W.-H., Jin J.-D. (2012) An ultra-low-power transformer-feedback 60 GHz low-noise amplifier in 90 nm CMOS. IEEE Microwave and Wireless Components Letters 22(4): 197–199

    Article  Google Scholar 

  18. Chen K.-H., Liu S.-I. (2012) Inductorless wideband CMOS low-noise amplifiers using noise-canceling technique. IEEE Transactions on Circuits and Systems—I: Regular Papers 59(2): 305–314

    Article  MathSciNet  Google Scholar 

  19. Madan A., McPartlin M. J., Masse C., Vaillancourt W., Cressler J. D. (2012) A 5 GHz 0.95 dB NF highly linear cascode floating-body LNA in 180 nm SOI CMOS technology. IEEE Microwave and Wireless Components Letters 22(4): 200–202

    Article  Google Scholar 

  20. Belostotski L., Haslett J. W. (2006) Noise figure optimization of inductively degenerated CMOS LNAs with integrated gate inductors. IEEE Transactions on Circuits and Systems—I: Regular Papers 53(7): 1409–1422

    Article  Google Scholar 

  21. Leroux P., Steyaert M. (2005) LNA-ESD co-design for fully integrated CMOS wireless receivers. Springer, Netherlands

    Book  Google Scholar 

  22. Comer D. J., Comer D. T. (2004) Operation of analog MOS circuits in the weak or moderate inversion region. IEEE Transactions on Education 47(4): 430–435

    Article  MathSciNet  Google Scholar 

  23. Toole B., Plett C., Cloutier M. (2004) RF circuit implications of moderate inversion enhanced linear region in MOSFETs. IEEE Transactions on Circuits And Systems—I: Regular Papers 51(2): 319–328

    Article  Google Scholar 

  24. Nguyen T.-K., Kim C.-H., Ihm G.-J., Yang M.-S., Lee S.-G. (2004) CMOS low-noise amplifier design optimization techniques. IEEE Transactions on Microwave Theory and Techniques 52(5): 1433–1442

    Article  Google Scholar 

  25. Samavati H., Rategh H. R., Lee T. H. (2000) A 5-GHz CMOS wireless LAN receiver front end. IEEE Journal of Solid-State Circuits 35(5): 765–772

    Article  Google Scholar 

  26. Fan X., Zhang H., Sánchez-Sinencio E. (2008) A noise reduction and linearity improvement technique for a differential cascode LNA. IEEE Journal of Solid-State Circuits 43(3): 588–599

    Article  Google Scholar 

  27. Gonzalez G. (1997) Microwave transistor amplifiers: Analysis and design. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  28. Lee T. H. (1998) The design of CMOS radio-frequency integrated circuits. Cambridge University Press, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manjula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manjula, S., Selvathi, D. Design of Low Power 2.4GHz CMOS Cascode LNA with Reduced Noise Figure for WSN Applications. Wireless Pers Commun 70, 1965–1976 (2013). https://doi.org/10.1007/s11277-012-0790-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0790-4

Keywords

Navigation