Skip to main content
Log in

Cooperative Spectrum Sensing Scheme with Hard Decision Based on Location Information in Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Without an efficient way to achieve the reliability of the decision, the implementation of weighted data fusion is limited in the hard decision combination for cooperative spectrum sensing. To address this problem, a new cooperative spectrum sensing scheme based on the location information of the primary user (PU) and cognitive radio (CR) is proposed. In the new scheme, depending on the location information, the channel condition between the PU and each CR is obtained at the fusion center (FC), with which the local sensing reliability is first achieved. Then we calculate the transmission reliability between the CR and FC. Based on both the local sensing reliability and the transmission reliability, the combining weighting factor is determined for optimal data fusion. On the basis of this proposed scheme, we study the global sensing false alarm and detection probabilities, derive the expressions to obtain the optimal local sensing threshold, and perform an error analysis that demonstrates the impact of imperfect channel knowledge. Using both analytical and simulation methods, we find that the proposed scheme achieves better performance compared with the conventional logical fusion rules in the hard decision combination for cooperative spectrum sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yücek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  2. Mishra, S., Sahai, A., & Brodersen, R. (2006). Cooperative sensing among cognitive radios. Proceedings of IEEE ICC. doi:10.1109/ICC.2006.254957.

  3. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.

    Article  Google Scholar 

  4. Cabric, D., Mishra, S., & Brodersen, R. (2004). Implementation issues in spectrum sensing for cognitive radios. In Proceedings of 38th Asilomar Conference on Signals Systems Computers. doi:10.1109/ACSSC.2004.1399240.

  5. Zarrin, S., & Lim, T. J. (2010). Cooperative spectrum sensing in cognitive radios with incomplete likelihood functions. IEEE Transactions on Signal Processing, 58(6), 3271–3281.

    Article  MathSciNet  Google Scholar 

  6. Quan, Z., Cui, S., & Sayed, A. H. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 2(1), 28–40.

    Google Scholar 

  7. Vistotsky, E., Kuffner, S., & Peterson, R. (2005). On collaborative detection of TV transmissions in support of dynamic spectrum sharing. In IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN). doi:10.1109/DYSPAN.2005.1542650.

  8. Ma, J., Zhao, G., & Li, Y. (2008). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communication, 7(11), 4502–4507.

    Article  Google Scholar 

  9. Quan, Z., Ma, W. K., Cui, S., & Sayed, A. H. (2010). Optimal linear fusion for distributed detection via semidefinite programming. IEEE Transactions on Signal Processing, 58(4), 2431–2436.

    Article  MathSciNet  Google Scholar 

  10. Sun, C., Zhang, W., & Letaief, K. B. (2007). Cooperative spectrum sensing for cognitive radios under bandwidth constraints. In Proceedings of IEEE Wireless Communication and Networking Conference. doi:10.1109/WCNC.2007.6.

  11. Nhan, N. T., & Insoo, K. (2009). An enhanced cooperative spectrum sensing scheme based on evidence theory and reliability source evaluation in cognitive radio context. IEEE Communications Letters, 13(7), 492–494.

    Article  Google Scholar 

  12. Zhang, W., Mallik, R. K., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.

    Article  Google Scholar 

  13. Chen, H., Chen, B., & Varshney, P. K. (2009). Further results on the optimality of the likelihood-ratio test for local sensor decision rules in the presence of nonideal channels. IEEE Transactions on Information Theory, 55(2), 828–832.

    Article  MathSciNet  Google Scholar 

  14. Celebi, H., & Arslan, H. (2007). Utilization of location information in cognitive wireless networks. IEEE Wireless Communications, 14(4), 6–13.

    Article  Google Scholar 

  15. Jondral, F. K. (2007). Cognitive radio: A communications engineering view. IEEE Wireless Communications, 14(4), 28–33.

    Article  Google Scholar 

  16. Celebi, H., Güven, í., Gezici, S., & Arslan, H. (2010). Cognitive-radio systems for spectrum, location, and environmental awareness. IEEE Antennas and Propagation Magazine, 52(4), 41–61.

  17. Yarkan, S., & Arslan, H. (2008). Exploiting location awareness toward improved wireless system design in cognitive radio. IEEE Communications Magazines, 46(1), 128–136.

    Article  Google Scholar 

  18. Wang, L. C., & Chen, A. (2009). Effects of location awareness on concurrent transmissions for cognitive ad hoc networks overlaying infrastructure-based systems. IEEE Transactions on Mobile Computing, 8(5), 577–589.

    Article  Google Scholar 

  19. Jia, P., Vu, M., Tho, L. N., Hong, S. C., & Tarokh, V. (2011). Capacity- and Bayesian-based cognitive sensing with location side information. IEEE Journal on Selected Areas in Communication, 29(2), 276–289.

    Article  Google Scholar 

  20. Paulraj, A., Nabar, R., & Gore, D. (2003). Introduction to space–time wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  21. Kurner, T., Cichon, D. J., & Wiesbeck, W. (1993). Concepts and results for 3D digital terrain-based wave propagation models: An overview. IEEE Journal on Selected Areas in Communications, 11(7), 1002–1012.

    Article  Google Scholar 

  22. Fugen, T., Maurer, J., Kayser, T., & Wiesbeck, W. (2006). Capability of 3-D ray tracing for defining parameter sets for the specification of future mobile communications systems. IEEE Transactions on Antennas and Propagation, 54(11), 3125–3137.

    Article  Google Scholar 

  23. Hassan, M. E., Liang, G., Bertoni, H. L., Rekanos, I. T., & Vainikainen, P. (2002). Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells. IEEE Transactions on Antennas and Propagation, 50(5), 703–712.

    Google Scholar 

  24. IEEE 802.22 Wireless RAN. (2009). Cognitive Wireless RAN medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV Bands.

  25. Lee, D. S., & Hsueh, Y. H. (2004). Bandwidth-reservation scheme based on road information for next-generation cellular networks. IEEE Transactions on Vehicular Technology, 53(1), 243–252.

    Article  Google Scholar 

  26. Celebi, H., & Arslan, H. (2007). Cognitive positioning systems. IEEE Transactions on Wireless Communicatins, 6(12), 4475–4483.

    Article  Google Scholar 

  27. Dissanayake, M. W. M. G., Newman, P., Clark, S., Whyte, H. F. D., & Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17(3), 229–241.

    Article  Google Scholar 

  28. Celebi, H. (2008). Location awareness in cognitive radio networks. Ph.D. dissertation, University of South Florida, FL.

  29. Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of IEEE, 55(4), 523–531.

    Article  Google Scholar 

  30. Digham, F. F., Alouini, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.

    Article  Google Scholar 

  31. Paulraj, A., Nabar, R., & Gore, D. (2003). Introduction to space–time wireless communications. UK: Cambridge University Press.

    Google Scholar 

  32. Goldsmith, A. (2006). Wireless communications. UK: Cambridge University Press.

    Google Scholar 

  33. Kchao, C., & Stüber, G. L. (1993). Analysis of a direct-sequence spread-spectrum cellular radio system. IEEE Transactions on Communications, 41(10), 1507–1516.

    Article  MATH  Google Scholar 

  34. Lever, K. V. (1998). New derivation of Craig’s formula for the Gaussian probability function. Electronics Letters, 34(19), 1821–1822.

    Article  Google Scholar 

  35. Simon, M. K., & Alouini, M.-S. (2000). Digital communication over fading channels. New York: Wiley.

    Book  Google Scholar 

  36. Chair, Z., & Varshey, P. K. (1986). Optimal data fusion in multiple sensor detection systems. IEEE Transactions on Aerospace and Electronic Systems, AES–22(1), 98–101.

    Article  Google Scholar 

  37. Olver, F. W. J., Lozier, D. W., Boisvert, R. F., & Clark, C. W. (2010). NIST handbook of mathematical functions. New York: Cambridge University Press.

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.U1035002/L05, No.61001087, No.60901018, No.60902027, No.60832007, No.61101034, and No.61271164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youxi Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Shen, Y., Shao, S. et al. Cooperative Spectrum Sensing Scheme with Hard Decision Based on Location Information in Cognitive Radio Networks. Wireless Pers Commun 71, 2637–2656 (2013). https://doi.org/10.1007/s11277-012-0961-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0961-3

Keywords

Navigation