Skip to main content
Log in

Step-Wisely Refinement Based Beam Searching Scheme for 60 GHz Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In the emerging 60 GHz millimeter-wave communications, the beam-forming technique has been widely recommended to efficiently compensate the significant path-loss in such bands. Unfortunately, the complexity of beam searching procedure, which is used to find the optimal beam-pair from a prescribed codebook, may generally tend to be unaffordable with the increasing of antenna elements. By formulating the beam-searching as a numerical optimization problem and properly exploring the beam characteristics generated by different array element numbers, the article proposed a fast beam searching algorithm. Compared with the existing schemes in current standards, our algorithm can significantly reduce the preamble transmissions accompanying energy consumption during beam searching process. Numerical simulation results further validate the superiority of the presented algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BF:

Beam-forming

BRP:

Beam refinement procedure

CSI:

Channel state information

EBW:

Efficient beam width

GRS:

Global refinement search

ISS:

Initiator sector sweep

ISWR-P:

Improved SWR-P

ISWR-R:

Improved SWR-R

LOS:

Line-of-sight

mmWave:

Millimeter-wave

NLOS:

Non-line-of-sight

PHY:

Physical layer

RS:

Refinement search

RSS:

Responder sector sweep

SLS:

Sector level sweep

SNR:

Signal-to-noise ratio

SWR:

Step-wisely refinement

SWR-P:

SWR with powell method

SWR-R:

SWR with rosenbrock method

TG:

Task group

WPAN:

Wireless personal area networks

WLAN:

Wireless local area networks

References

  1. Maruhashi, S., Kishimoto, M., Ito, M., et al. (2005). Wireless uncompressed-HDTV-signal transmission system utilizing compact 60-GHz-band transmitter and receiver. In Proceedings of IEEE MTT-S international microwave symposium digest, Long Beach, CA, 12–17 June 2005 (pp. 1867–1870).

  2. Xia, P., Qin, X., Niu, H., et al. (2007). Short range gigabit wireless communications systems: Potentials, challenges and techniques. In Proceedings of IEEE international conference on ultra-wideband, ICUWB, Singapore, 24–26 Sep, 2007 (pp. 123–128).

  3. Gilb, J. P. K. (Technical Editor). (2009). IEEE Standards 802.15.3cTM-Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs) Amendment 2: Millimeter-wave-based Alternative Physical Layer Extension. New York, USA, IEEE Computer Society.

  4. Cordeiro, C. (Technical Editor). (2010). IEEE P802.11adTM/D0.1-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 6: Enhancements for Very High Throughput in the 60 GHz Band. New York, USA, IEEE 802.11 Committee of the IEEE Computer Society.

  5. Wang, J., Lan, Z., Pyo, C., et al. (2009). Beamforming codebook design and performance evaluation for millimeter-wave WPAN. In Proceedings of the IEEE vehicular technology conference (VTC. 2009. Fall). Anchorage, USA, Sep., 20–23 (2009) (pp. 1–6).

  6. Honghua, X., & Ke, L. (2010). Research on wireless communication networks in the 60 GHz frequency band. In Proceedings of 2010 international conference on internet technology and applications (iTAP), Wuhan, China, 21 Aug-23 Aug 2010 (pp. 1–4).

  7. Wang, J., Lan, Z., Pyo, C.-W., et al. (Oct. 2009). Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1390–1399.

    Google Scholar 

  8. Tan, Y. C. M. (2010). Computational modeling and simulation to design 60 GHz mmWave antenna. In Proceedings of 2010 IEEE international symposium antennas and propagation and CNC/USNC/URSI radio science meeting, Toronto, Canada, 11–17 Jul 2010 (pp. 1–4).

  9. Winters, J. H. (1998). Smart antennas for wireless systems. IEEE Personal Communications, 5(1), 23–27.

    Article  Google Scholar 

  10. Chryssomallis, M. (2000). Smart antennas. IEEE Antennas and Propagation Magazine, 42(3), 129–136.

    Article  Google Scholar 

  11. Gershman, A. B., Sidiropoulos, N. D., Shahbazpanahi, S., Bengtsson, M., & Ottersten, B. (2010). Convex optimization-based beamforming. IEEE Signal Processing Magazine, 27(3), 62–75.

    Article  Google Scholar 

  12. Wang, J., Lan, Z., Pyo, C.-W., et al. (2009). Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. In Proceedings of 2009 IEEE global telecommunications conference (GLOBECOM 2009), Honolulu, HI, USA, 30 Nov–04 Dec 2009 (pp. 1–6).

  13. Foerster, J. R., Pendergrass, M., & Molisch, A. F. (2003). Channel model for ultra-wideband personal area networks. IEEE Wireless Communicatons, 10(6), 14–21.

    Article  Google Scholar 

  14. Liu, C., Skafidas, E., Pollock, T. S., & Evans, R. J. (2006). Angle of arrival extended S-V model for the 60 GHz wireless desktop channel. In The 17th annual IEEE international symposium on personal, indoor and mobile radio communications (PIMRC’06). Sept., 2006 (pp. 1–6).

  15. Liu, C., Skafidas, E., & Evans, R. J. (2007). Characterization of the 60 GHz wireless desktop channel. IEEE Transactions on Antennas and Propagation, 55(7), 2129–2133.

    Article  Google Scholar 

  16. Yoon, S., Jeon, T., & Lee, W. (2009). Hybrid beam-forming and beam-switching for OFDM based wireless personal area networks. IEEE Journal of Selected Areas Communications, 27(8), 1425–1432.

    Article  Google Scholar 

  17. Yong, S. K., et al. TG3c channel modeling sub-committee final report. https://mentor.ieee.org/802.15/dcn/07/15-07-0584-01-003c-tg3c-channel-modeling-sub-committee-final-report.doc.

  18. Maltsev, A., et al. Channel models for 60 GHz WLAN systems. https://mentor.ieee.org/802.11/dcn/09/11-09-0334-08-00ad-channel-models-for-60-ghz-wlan-systems.doc.

  19. Sawada, H., Fujita, K., Kato, S., et al. (2010). Impulse response model for the cubicle environments at 60 GHz. In Proceedings of 2010 Asia Pacific microwave conference–(APMC 2010), Yokohama, Japan, 7–10 Dec. 2010 (pp. 2131–2134).

  20. Sawada, V., Fujita, K., Kato, S., et al. (2010). Impulse response model and parameters for indoor channel modeling at 60 GHz. In Proceedings of 2010 IEEE vehicular technology conference (VTC 2010-Spring), Taipei, Taiwan, 16–19 May 2010 (pp. 1–5).

  21. Papio, A., Grau, A., Balcells, J., et al. (2010). 60 GHz channel characterization using a scattered mapping technique. In Proceedings of 2010 4th European conference on antennas and propagation (EuCAP), Barcelona, Spain, 12–16 Apr 2010 (pp. 1–5).

  22. Lewisa, R. M., Torczona, V., & Trosset, M. W. (2000). Direct search methods: Then and now. Journal of Computational and Applied Mathematics, (124), 191–207.

    Google Scholar 

  23. Kolda, T., Lewis, R., & Torczon, V. (2003). Optimization by direct search: New perspectives on some classical and modern methods. SIAM Review, 45(3), 385–482.

    Article  MathSciNet  MATH  Google Scholar 

  24. Powell, M. J. D. (1964). An efficient method of finding the minimum of a function of several variables without calculating derivatives. Computer Journal, 7, 155–1627.

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, B., Zhou, Z., Zou, W.-X., Sun, X.-B., Du, G.-L., On the efficient beam-forming training for 60 GHz wireless personal area networks. IEEE Transactions on Wireless Communications. doi: 0.1109/TWC.2012.121412.110419.

Download references

Acknowledgments

This work was supported by NSFC (61171104), the Fundamental Research Funds for the Central Universities (G470712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, WX., Du, GL., Li, B. et al. Step-Wisely Refinement Based Beam Searching Scheme for 60 GHz Communications. Wireless Pers Commun 71, 2993–3010 (2013). https://doi.org/10.1007/s11277-012-0985-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0985-8

Keywords

Navigation