Skip to main content
Log in

Performance Analysis on Two-Way Relay System with Co-Channel Interference

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

An Erratum to this article was published on 05 April 2013

Abstract

In this paper, we investigate the performance of two-way relay system with co-channel interference in a Rayleigh fading environment. Due to the mathematical intractability of original expression of signal-to-interference and noise ratio (SINR) induced by the bi-directional forwarding, a couple of effective bounds are derived for important performance metrics such as outage probability and average bit error rate of modulation, with application of diverse physical layer network coding (PNC) schemes of two time slot (2TS) and three time slot (3TS). Some asymptotic solutions are also proposed to intuitively exhibit the trends of performance in high SINR regime. We demonstrate that the performance bounds have practical meaning corresponding to different forwarding capability of the relay. Numeric simulations validate our analysis by showing that the theoretic bounds match well with simulation results. Additionally, the effect of distance between relay and sources is discussed in our interference scenario, as well as the impact of relay’s power allocation factor in 3TS PNC scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  2. Kramer, G., Gastpar, M., & Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 51(9), 3037–3063.

    Article  MathSciNet  Google Scholar 

  3. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  Google Scholar 

  4. Larsson, P., Johansson, N., & Sunell, K. E. (2006). Coded Bi-directional relaying. In IEEE VTC-Spring 2006 (pp. 851–855). Melbourne, VC, May 2006.

  5. Zhang, S., Liew, S. C., & Lu, L. (2008). Physical layer network coding schemes over finite and infinite fields. In IEEE GLOBECOM 2008 (pp. 1–6). New Orleans, LO, Nov. 2008.

  6. Zhang, S., Liew, S. C., & Wang, H. (2011). Synchronization analysis for wireless TWRC operated with physical-layer network coding. Wireless Personal Communications, Springer, published online 20 Dec. 2011.

  7. Popovski, P. & Yomo, H. (2007). Physical network coding in two-way wireless relay channels. In IEEE ICC ’07 (pp. 707–711). Glasgow, Scotland, June 2007.

  8. Louie, R. H., Li, Y., & Vucetic, B. (2010). Practical physical layer network coding for two-way relay channels: Performance analysis and comparison. IEEE Transactions on Wireless Communication, 9(2), 764–777.

    Article  Google Scholar 

  9. Talwar, S., Jing, Y., & Shahbazpanahi, S. (2011). Joint relay selection and power allocation for two-way relay networks. IEEE Signal Processing Letters, 18(2), 91–94.

    Article  Google Scholar 

  10. Yi, Z., Ju, M. C., & Kim, I. M. (2011). Outage probability and optimum combining for time division broadcast protocol. IEEE Transactions on Wireless Communications, 10(5), 1362–1367.

    Article  Google Scholar 

  11. 3GPP TS 36.300, Evolved Universal Terrestrial Radio Access (E-UTRA); Overall description (Release 9), June 2010.

  12. Boudreau, G., Panicker, J., Guo, N., Chang, R., Wang, N., & Vrzic, S. (2009). Interference coordination and cancellation for 4G networks. Communication Magazine IEEE, 47(4), 74–81.

    Article  Google Scholar 

  13. Rahman, M., & Yanikomeroglu, H. (2010). Enhancing cell-edge performance: A downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, 9(4), 1414–1425.

    Article  Google Scholar 

  14. You, C., Yoon, G., Seo, C., Portugal, S., Park, G., Jung, T., et al. (2011). Intercell interference coordination using threshold-based region decisions. Wireless Personal Communications, Springer, 59(4), 789–806.

    Article  Google Scholar 

  15. Jain, K., Padhye, J., Padmanabhan, V. N., & Qiu, L. (2005). Impact of interference on multi-hop wireless network performance. Wireless Networks, Springer, 11(4), 471–487.

    Article  Google Scholar 

  16. Lee, D., & Lee, J. H. (2009) Outage probability for opportunistic relaying on multicell enviornment. In IEEE VTC-Spring 2009 (pp. 1–5), Barcelona, Spain.

  17. Zhong, C., Jin, S., & Wong, K. K. (2010). Dual-hop systems with noisy relay and interference-limited destination. IEEE Transactions on Communications, 58(3), 764–768.

    Article  MathSciNet  Google Scholar 

  18. Suraweera, H. A., Garg, H. K., & Nallanathan, A. (2010). Performance analysis of two hop amplify-and-forward system with interference at the relay. IEEE Communication Letters, 14(8), 692–694.

    Article  Google Scholar 

  19. Lee, D., & Lee, J. H. (2011). Outage probability for dual-hop relaying systems with multiple interferers over Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 60(1), 333–338.

    Article  Google Scholar 

  20. Soithong, T., Aalo, V. A., Efthymoglou, G. P., & Chayawan, C. (2011). Performance of multihop relay systems with co-channel interference in Rayleigh fading channels. IEEE Communications Letters, 15(8), 836–838.

    Article  Google Scholar 

  21. Chen, M. &, Yener, A. (2008). Multiuser Two-Way Relaying for Interference Limited Systems. In IEEE ICC ’08 (pp. 3883–3887), Beijing, China.

  22. Shen, J., Sha, N., Cai, Y., Cai, C., & Yang, W. (2011). Outage probability of two-way amplify-and-forward relaying system with interference-limited relay. In IEEE Wireless Communication & Signal Processing (WCSP) (pp. 1–5), Nanjing, China.

  23. Liang, X., Jin, S., Wang, W., Gao, X., & Wong, K. K. (2011). Outage performance for two-way relay channel with co-Channel interference, accepted by IEEE Globecom 2011. Houston, TX, USA, Dec. 2011.

  24. Yang, F., Huang, M., Zhang, S., & Zhou, W. (2012). Bound analysis of physical layer network coding in interference-limited two-way relaying system, accepted by IEEE VTC-Spring 2012. Yokohama, Japan.

  25. Hiertz, G. R., Max, S., Zhao, R., Denteneer, D., & Berlemann, L. (2007). Principles of IEEE 802.11s. In International Conference on Computer Communications and Networks (pp. 1002–1007), Aug. 2007.

  26. Nam, Y.-H., Liu, L., Wang, Y., Zhang, C., Cho, J., & Han, J.-K. (2010). Cooperative communication technologies for LTE-advanced. In IEEE Conference on Acoustics Speech and Signal Processing (ICASSP) (pp. 5610–5613).

  27. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  28. Abramowitz, M., & Stegun, I. A. (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables, chapter 9 and 13. New York: Courier Dover Publications.

    Google Scholar 

  29. Bjornson, E., Hammarwall, D., & Ottersten, B. (2009). Exploiting quantized channel norm feedback through conditional statistics in arbitrarily correlated MIMO systems. IEEE Transactions on Signal Processing, 57(10), 4027–4041.

    Article  MathSciNet  Google Scholar 

  30. Li, Y., & Kishore, S. (2007). Asymptotic analysis of amplify-and-forward relaying in Nakagami-fading environments. IEEE Transactions on Wireless Communications, 6(12), 4256–4262.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC(61172088), National programs for High Technology Research and Development(SS2012AA011702), the National Major Special Projects in Science and Technology of China under grant 2010ZX03003-001, 2010ZX03005-003, 2011ZX03003-003-04, and National key technology R&D program under Grant 2008BAH30B12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihai Zhang.

Appendices

Appendix A: Proof of Lemma 1

The sum \(||\mathbf Y ||_1=\sum _{i=1}^n Y_i\) follows a generalized chi-square distribution of which the PDF is (see [29])

$$\begin{aligned} f_{||\mathbf Y ||_1}(u)=\sum _{k=1}^{r(\bar{\mathbf{Y }})} \sum _{l=1}^{v_k(\bar{\mathbf{Y }})} \frac{\varphi _{k,l}(\bar{\mathbf{Y }})}{\Gamma (l)\bar{Y} _{[k]}^l}u^{l-1}\exp \left(-\frac{u}{\bar{Y}_{[k]}}\right) \end{aligned}$$
(45)

where the parameters are already introduced in the remarks of Lemma 1. Thus the final CDF in Lemma 1 is calculated as follows:

$$\begin{aligned} F_Z(z)&= \Pr (X<z(w+||\mathbf Y ||_1)) \nonumber \\&= \int \limits _0^{+\infty }F_X\left(z(w+u)\right)f_{||\mathbf Y ||_1}(u)\,\text{ d}u \nonumber \\&= \int \limits _0^{+\infty }\left[1-\exp \left\{ -\frac{z(w+u)}{\bar{X}}\right\} \right] \sum _{k=1}^{r(\bar{\mathbf{Y }})}\sum _{l=1}^{v_k(\bar{\mathbf{Y }})} \frac{\varphi _{k,l}(\bar{\mathbf{Y }})}{\Gamma (l)\bar{Y}_{[k]}^l}u^{l-1}\exp \left(-\frac{u}{\bar{Y}_{[k]}}\right)\,\text{ d}u \nonumber \\ \end{aligned}$$
(46)
$$\begin{aligned}&= 1-\sum _{k=1}^{r(\bar{\mathbf{Y }})}\sum _{l=1}^{v_k(\bar{\mathbf{Y }})}\varphi _{k,l}(\bar{\mathbf{Y }}) \left(1+\frac{\bar{Y}_{[k]}}{\bar{X}}z\right)^{-l} \exp \left(-\frac{w}{\bar{X}}z\right) \end{aligned}$$
(47)

Appendix B: Proof of Theorem 1

According to (18), we have

$$\begin{aligned} \mathcal P _\mathcal{O ,A}^{\tau \mathrm TS }(\gamma _\mathrm{th ,A})&> \Pr \{\gamma _{A,\mathrm ub }^{\tau \mathrm TS }<\gamma _\mathrm{th ,A}\} \\&= 1-\Pr \{\gamma _{A,\mathrm ub }^{\tau \mathrm TS }\ge \gamma _\mathrm{th ,A}\} \\&= 1-\Pr \left\{ \frac{c\rho _A}{\sigma _n^2+||\mathbf Q _A^{\tau \mathrm TS }||_1}\ge \gamma _\mathrm{th ,A}\right\} \cdot \Pr \left\{ \frac{P_B^{\tau \mathrm TS }}{N_{R,A}^{\tau \mathrm TS }+||\mathbf Q _R^{\tau \mathrm TS }||_1}\ge \gamma _\mathrm{th ,A}\right\} \end{aligned}$$

Utilizing Lemma 1, the lower bound of outage is immediately obtained as (23). On the other hand,

$$\begin{aligned}&\mathcal P _\mathcal{O ,A}^{\tau \mathrm TS }(\gamma _\mathrm{th ,A}) \\&\quad \approx 1-\Pr \{\gamma _{A,\mathrm lb }^{\tau \mathrm TS } \ge \gamma _\mathrm{th ,A}\} \\&\quad =1-\Pr \left\{ \frac{P_A^{\tau \mathrm TS }}{N_A^{\tau \mathrm TS } +||\mathbf Q _{R,A}^{\tau \mathrm TS }||_1}\ge \gamma _\mathrm{th ,A}, \frac{P_B^{\tau \mathrm TS }}{N_{R,A}^{\tau \mathrm TS } +||\mathbf Q _{R,A}^{\tau \mathrm TS }||_1} \ge \gamma _\mathrm{th ,A}\right\} \\&\quad =1-\int \limits _0^{+\infty }\Pr \{P_A^{\tau \mathrm TS }\ge \gamma _\mathrm{th ,A}(N_A^{\tau \mathrm TS }+y)\} \cdot \Pr \{P_B^{\tau \mathrm TS }\ge \gamma _\mathrm{th ,A} (N_{R,A}^{\tau \mathrm TS }+y)\} f_{||\mathbf Q _{R,A}^{\tau \mathrm TS }||_1}(y)\,\mathrm d y \\&\quad = 1-\int \limits _0^{+\infty }\exp \left(-\frac{\gamma _\mathrm{th ,A} (N_A^{\tau \mathrm TS }+y)}{\bar{P}_A^{\tau \mathrm TS }}\right) \cdot \exp \left(-\frac{\gamma _\mathrm{th ,A}(N_{R,A}^{\tau \mathrm TS }+y)}{\bar{P}_B^{\tau \mathrm TS }}\right) f_{||\mathbf Q _{R,A}^{\tau \mathrm TS }||_1}(y)\,\mathrm d y \\&\quad =1-\int \limits _0^{+\infty }\exp \left(-\frac{\gamma _\mathrm{th ,A} (\alpha ^{\tau \mathrm TS }+y)}{\beta ^{\tau \mathrm TS }}\right) f_{||\mathbf Q _{R,A}^{\tau \mathrm TS }||_1}(y)\,\text{ d}y \end{aligned}$$

where \(\alpha ^{\tau \mathrm TS },\beta ^{\tau \mathrm TS }\) are notated as (25) and (26). With manipulation similar to the calculation from (46) to (47), the final result is derived as (24).

Appendix C: Proof of Theorem 2

The original integration of (31) is mathematically untractable when utilizing the exact expression of (23), (24) and (32), and we want to make use of the asymptotic CDF to calculate the integration. Following lemma is useful for asymptotic CDF derivation.

Lemma 3

Suppose the CDF of \(X_1\) has an asymptotic form of \(F_{X_1}(x;\rho )=\sum _{n=1}^{+\infty }a_n\left(\frac{x}{\rho }\right)^n\) as \(\rho \rightarrow +\infty \), and CDF of \(X_2\) \(F_{X_2}(x;\rho )=\sum _{n=1}^{+\infty }b_n\left(\frac{x}{\rho }\right)^n\), then the CDF of a sum RV \(Y=X_1+X_2\) has the asymptotic form CDF:

$$\begin{aligned} F_Y(y)=\int \limits _0^{y}\sum _{m=1}^{+\infty }a_m\left(\frac{y-x}{\rho } \right)^m\times \sum _{n=1}^{+\infty }\frac{nb_n}{\rho }\left(\frac{x}{\rho }\right) ^{n-1}\text{ d}x =\frac{a_1b_1y^2}{2\rho ^2}+o\left(\rho ^{-2}\right) \end{aligned}$$
(48)

\(\square \)

An example of Lemma 3 utilization can be seen in [30]. Using (29), (30) and the asymptotic form of (32)

$$\begin{aligned} F_{\gamma _{A,B}}(x)\approx \frac{x}{\bar{\rho }_{A,B}} \varTheta _1(\sigma _n^2,\bar{\mathbf{Q }}_A^{2\mathrm TS }) \end{aligned}$$
(49)

along with Lemma 3, Theorem 2 is immediately obtained.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Huang, M., Zhang, S. et al. Performance Analysis on Two-Way Relay System with Co-Channel Interference. Wireless Pers Commun 72, 415–434 (2013). https://doi.org/10.1007/s11277-013-1021-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1021-3

Keywords

Navigation