Skip to main content
Log in

Distributed Delay-Aware Routing and Metrics Evaluation for Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radii can dynamically sense, negotiate, and switch to available spectral bands to enhance spectrum utilization. The available spectral resource may vary with time and places, which lead to several implementation difficulties to send data in multi-hop cognitive radio networks (CRNs). We considered such factors as available time, spectral bands, transmission ranges, error rates, and primary user interruption rates, as well as sensing, negotiating, selecting, and switching time, and designed a delay-aware routing metric for multi-band, multi-rate, and multi-range CRNs. A distributed routing scheme was designed, and the performance was evaluated by a centralized algorithm in regard to the average and maximal end-to-end delays. The results demonstrated that the metrics considering the link- and nodal-delays outperforms current solutions, including probability-aware, capacity-aware, and hop-count methods, by an average of 13 %. We further discuss related issues and conclude our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akyildiz, I. F., Lee, W. Y., & Chowdhury, K. (2009). Spectrum management in cognitive radio ad hoc networks. IEEE Network, 23(4), 6–12.

    Article  Google Scholar 

  2. Liang, C., Chen, C., Li, G. Y., & Mahonen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transaction on Vehicular Technology, 60(7), 3386–3407.

    Article  Google Scholar 

  3. Stavroulaki, V., Petromanolakis, D., & Demestichas, P. (2012). Utility-aware cognitive network selections in wireless infrastructures. Wireless Personal Communications, 63(1), 1–30.

    Article  Google Scholar 

  4. Tachwali, Y., Basma, F., & Refai, H. H. (2012). Adaptability and configurability in cognitive radio design on small form factor software radio platform. Wireless Personal Communications, 62(1), 1–29.

    Article  Google Scholar 

  5. Zhao, N. (2013). A novel two-stage entropy-based robust cooperative spectrum sensing scheme with two-bit decision in cognitive radio. Wireless Personal Communications, doi:10.1007/s11277-012-0650-2 (Published Online).

  6. Vizireanu, D. N. (2011). A simple and precise real-time four point single sinusoid signals instantaneous frequency estimation method for portable DSP based instrumentation. Measurement, 44(2), 500–502.

    Article  Google Scholar 

  7. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communication, 6(4), 13–18.

    Article  Google Scholar 

  8. Prasad, R. V., Pawelczak, P., Hoffmeyer, J. A., & Berger, H. S. (2008). Cognitive functionality in next generation wireless networks: Standardization efforts. IEEE Communication Magazine, 46(4), 72–78.

    Article  Google Scholar 

  9. Penna, F., & Garello, R. (2011). Detection of discontinuous signals for cognitive radio applications. IET Communication, 5(10), 1453–1461.

    Article  MathSciNet  Google Scholar 

  10. Hosseini, S. M., Teimouri, M., & Nadarajah, S. (2012). Available and waiting times for cognitive radios. Wireless Personal Communications, 65(2), 319–334.

    Article  Google Scholar 

  11. Wen, Y. F., & Liao, W. (2010). On QoS routing in wireless ad-hoc cognitive radio networks. In Proceedings of IEEE vehicular technology conference (VTC 2010-Spring) (pp. 1–5).

  12. Adamopoulou, E., Demestichas, K., & Theologou, M. (2008). Enhanced estimation of configuration capabilities in cognitive radio. IEEE Communication Magazine, 46(4), 56–63.

    Article  Google Scholar 

  13. Tang, J., Xue, G., & Zhang, W. (2009). Cross-layer optimization for end-to-end rate allocation in multi-radio wireless mesh networks. ACM Wireless Network, 15(1), 53–64.

    Article  Google Scholar 

  14. Cheng, G., Liu, W., Li, Y., & Cheng, W. (2007). Spectrum aware on-demand routing in cognitive radio networks. In Proceedings of IEEE international symposium new frontiers in dynamic spectrum access, networks (DySPAN’07) (pp. 571–574).

  15. Lim, H. J., Seol, D. Y., & Im, G. H. (2010). Resource allocation for mitigating the effect of sensing errors in cognitive radio networks. IEEE Communication Letter, 14(12), 1119–1121.

    Article  Google Scholar 

  16. Lin, C., & Chen, C. (2010). Spectrum aware opportunistic routing in cognitive radio networks. In Proceedings of IEEE global telecommunications conference (IEEE GLOBECOM 2010) (pp. 1–6).

  17. Farraj, A. K., & Hammad, E. M. (2011). Performance of primary users in spectrum sharing cognitive radio environment. Wireless Personal Communications, doi:10.1007/s11277-011-0469-2 (Published Online).

  18. Farraj, A. K., & Hammad, E. M. (2012). Impact of quality of service constraints on the performance of spectrum sharing cognitive users. Wireless Personal Communications. doi:10.1007/s11277-012-0606-6 (Published Online).

  19. Farraj, A. K. (2012). Impact of cognitive communications on the performance of the primary users. Wireless Personal Communications. doi:10.1007/s11277-012-0855-4 (Published Online).

  20. Gür, G., Bayhan, S., & Alagöz, F. (2010). Cognitive femtocell networks: An overlay architecture for localized dynamic spectrum access. IEEE Wireless Communication, 17(4), 62–70.

    Article  Google Scholar 

  21. FCC. (2002). Spectrum policy task force report. ET Docket, no. 02–135, Nov. 2002.

  22. Lei, G., Wang, W., Peng, T., & Wang, W. (2008). Routing metric in cognitive radio networks. In Proceedings of IEEE international conference on circuits and systems for, communications (ICCSC’08) (pp. 265–269).

  23. Mumey, B., Zhao X., Tang, J., & Wolff, R. (2010). Transmission scheduling for routing paths in cognitive radio mesh networks. In Proceedings of communications society conference on sensor mesh and ad hoc Communications and, Networks (SECON’10) (pp. 1–8).

  24. Qaraqe, K. A., Ekin, S., Agarwal, T., & Serpedin, E. (2011). Performance analysis of cognitive radio multiple-access channels over dynamic fading environments. Wireless Personal Communications. doi:10.1007/s11277-011-0497-y (Published Online).

  25. Yuan, Y., Bahl, P., Chandra, R., Moscibroda, T., & Wu, Y. (2007). Allocating dynamic time-spectrum blocks in cognitive radio networks. In Proceedings of tenth ACM international symposium on mobile ad hoc networking and, computing (MobiHoc’07) (pp. 130–139).

  26. Wang, W., Shin, K. G., & Wang, W. (2012). Distributed resource allocation based on queue balancing in multi-hop cognitive radio networks. IEEE ACM Transaction on Network, 20(3), 837–850.

    Article  MathSciNet  Google Scholar 

  27. Bao, X., Martins, P., Song, T., & Shen, L. (2011). Stable throughput and delay performance in cognitive cooperative systems. IET Communication, 5(2), 190–198.

    Article  MathSciNet  Google Scholar 

  28. Zhang, Q., & Fitzek, F. H. P. (2007). Cooperative retransmission for reliable wireless multicast services. In Cognitive wireless networks concepts, methodologies and visions, inspiring the AGe of enlightenment of wireless communications Chap 25 cognitive wireless networks (1st edn, pp. 485–498). New York: Springer.

  29. Shi, Y., Hou, Y. T., Zhou, H., & Midkiff, S. F. (2010). Distributed cross-layer optimization for cognitive radio networks. IEEE Transaction on Vehicular Technology, 59(8), 4058–4069.

    Article  Google Scholar 

  30. TCI 8067. (2000). Spectrum processor data specification. http://www.tcibr.com/PDFs/8067webs.pdf.

  31. Kleinrock, L. (1975–1976). Queuing systems. New York, Wiley-Interscience.

  32. Cormen, T. H., Leiserson, C. E., & Rivest, C. (2001). Introduction to algorithms. In Section 24.1: The Bellman-Ford algorithm (2nd edn, pp. 588–592). MIT Press.

Download references

Acknowledgments

This work was supported in part by National Science Council (NSC), Taiwan, under Grant Numbers NSC 98-2221-E-415-005- and NSC 100-2221-E-415-010-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yean-Fu Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, YF. Distributed Delay-Aware Routing and Metrics Evaluation for Cognitive Radio Networks. Wireless Pers Commun 72, 779–794 (2013). https://doi.org/10.1007/s11277-013-1042-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1042-y

Keywords

Navigation