Skip to main content
Log in

BST Varactor Loaded Frequency Agile Stacked Circular Microstrip Radiator

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A new frequency agile BST varactor loaded stacked circular microstrip antenna is presented. The antenna is analysed using extended cavity model. One of two bands of antenna is tunable with the help of BST varactor. The upper band is useful for WiMAX and lower band for other wireless communication systems. Various antenna parameters like return loss, resonant frequency, frequency agility etc. have been investigated. The simulated results agree well with the numerical data. A frequency agility of 60.64 % is achieved, which is better than simple Varactor diode loaded antenna. Lowest resonant frequency of 0.866 GHz is obtainable that shows a significant physical area reduction. The group delay of S\(_{11}\) remains constant for entire band of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chu, L. J. (1948). Physical limitations on omnidirectional antennas. Journal of Applied Physics, 19, 1163–1175.

    Article  Google Scholar 

  2. Nasimuddin, N. (2007). Design of wide band circularly polarized stacked microstrip antenna with dielectric cover using single feed. Microwave and Optical Technology Letters, 49(12), 3027–3033.

    Google Scholar 

  3. Singhal, P. K., Dhaniram, B., & Banerjee, S. (2003). A stacked square patch slotted broadband microstrip antenna. Journal of Microwaves and Optoelectronics, 3(2), 60–66.

    Google Scholar 

  4. Ali, M., & Abu, T. M. (2007). A reconfigurable stacked microstrip antenna for satellite and terristial link. IEEE Transactions on Vehicular Technology, 56(2), 426–435.

    Article  Google Scholar 

  5. Anguera, J., Boada, L., Puente, C., Borja, C., & Solar, J. (2004). Stacked H-shaped microstrip patch antenna. IEEE Transactions on Antennas and Propagation, 52(4), 983–993.

    Article  Google Scholar 

  6. Ooi, B.-L., Qin, S., & Leong, M.-S. (2002). Novel design of broad band stacked patch antenna. IEEE Transactions on Antenna and Propagation, 50(10), 1391–1395.

    Article  Google Scholar 

  7. Luk, K. M., Lee, K. F., & Chow, Y. L. (1998). Proximity-coupled stacked circular-disc microstrip antenna with slots. Electronics Letters, 34(5), 419–420.

    Article  Google Scholar 

  8. Pandey, G. P., Kanaujia, B. K., & Gupta, S. K. (2009). Double MOS loaded circular microstrip antenna for frequency agile. Proceedings of IEEE international conference. Applied electromagnetic conference, Kolkata, India.

  9. Sheta, E., & Alkanhal, M. A. (2008). Compact dualband tunable microstrip antenna for GSM/DCS-1800 applications. IET Microwaves Antennas and Propagation, 2(3), 274–280.

    Article  Google Scholar 

  10. Behdad, N., & Sarabandi, K. (2006). Dual band reconfigurable antenna with very wide tunability range. IEEE Transactions on Antennas and Propagation, 54(2), 409–416.

    Article  Google Scholar 

  11. Nishiyama, E., & Itoh, T. (2008). Widely tunable stacked microstrip antenna using varactor diodes. APMC.

  12. Gómez T. J., & Christopher, C. G. (1997). Extended cavity model analysis of stacked microstrip ring antennas. IEEE Transactions on Antennas and Propagation, 45(11), 1626–1635.

    Google Scholar 

  13. Bahl, J., & Bhartia, P. (1980). Microstrip antennas. Dedham, MA: Artech House.

    Google Scholar 

  14. Abboud, F., Damiano, J. P., & Papiernik, A. (1990). A new model for calculating the input impedance of coax-fed circular microstrip antennas with and without air gaps. IEEE Transactions on Antennas and Propagation, 38(11), 1882–1885.

    Article  Google Scholar 

  15. Guha, D. (2001). Resonant frequency of circular microstrip antennas with and without air gaps. IEEE Transactions on Antennas and Propagation, 49(1), 55–59.

    Google Scholar 

  16. Bernhard, J. T., & Tousgnant, C. J. (1999). Resonant frequencies of rectangular microstrip antennas with flush and spaced dielectric Superstrates. IEEE Transaction on Antenna and Propagation, 47(2), 302–308.

    Article  Google Scholar 

  17. Guha, D., & Siddiqui, J. Y. (2003). Resonant frequency of microstrip antenna covered with dielectric superstarte. IEEE Transaction on Antenna and Propagation, 51(7), 1649–1652.

    Article  Google Scholar 

  18. James, J. R., & Hall, P. S. (1989). Handbook of microstrip antennas. London, UK: Peter Peregrinus.

    Book  Google Scholar 

  19. Matin, M. A., Sharif, B. S., & Tsimenidis, C. C. (2007). Dual layer atacked rectangular microstrip antenna for ultra-wideband applications. IET Microwave Antennas Propagation, 1(6), 1192–1196.

    Article  Google Scholar 

  20. Chase, D. R., Chen, L. Y., & York, R. A. (2005). Modeling the capacitive non-linearity in thin film BST varactors. IEEE Transactions on Microwave theory and Techniques, 53(10), 3215–3220.

    Article  Google Scholar 

  21. ADS Simulation software v2011.

Download references

Acknowledgments

This research is supported by Department of Science and Technology (Vigyan Aur Prodhyogiki Vibhag) government of India under SERC Scheme Project sanction order No. SR/S3/EECE/0117/2010(G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binod Kumar Kanaujia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, G.P., Kanaujia, B.K., Gupta, S.K. et al. BST Varactor Loaded Frequency Agile Stacked Circular Microstrip Radiator. Wireless Pers Commun 72, 1157–1172 (2013). https://doi.org/10.1007/s11277-013-1071-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1071-6

Keywords

Navigation