Skip to main content
Log in

A Rate \(\text{ M }_{\mathrm{T}}\) Full Diversity STF Block Coded \(4\times 4\) MIMO-OFDM System with Reduced Complexity

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multiple input multiple output (MIMO) communication systems with orthogonal frequency division multiplexing (OFDM) has a great role to play for 4G broadband wireless communications. In this paper, a space time frequency (STF) code is presented with reduced decoder complexity and to achieve code rate \(\text{ M }_\mathrm{T}\) with full diversity of \(\text{ M }_{\mathrm{T}} \text{ M }_{\mathrm{R}} \text{ N }_{\mathrm{b}}\) L i.e., product of number of transmit antennas (\(\text{ M }_\mathrm{T}\)), receive antennas \((\text{ M }_{\mathrm{R}})\), fading blocks \((\text{ N }_{\mathrm{b}})\) and channel taps (L). The maximum achievable diversity with high rate of STF block coded MIMO-OFDM is analyzed and verified by simulation results. The decoder complexity is resolved by employing several approaches like maximum likelihood (ML), sphere decoder (SD) and array processing. The performance of STF code is compared with existing layered algebraic STF code in terms of decoder complexity and bit error rate (BER). Further, the closed form expressions for BER performance of STFBC MIMO-OFDM systems are derived and evaluated for frequency selective block fading channels with MPSK constellations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Murch, R. D., & Letaief, K. B. (2002). Antenna systems for broadband wireless access. IEEE Communications Magazine, 40, 76–83.

    Article  Google Scholar 

  2. Bolcskei, H. (2006). MIMO-OFDM wireless systems: Basics, perspectives and challenges. IEEE Wireless Communications, 13, 31–37.

    Article  Google Scholar 

  3. Wang, H., & Xia, X. G. (2003). Upper bounds of rates of complex orthogonal space-time block codes. IEEE Transactions on Information Technology, 49, 2788–2796.

    Article  MathSciNet  Google Scholar 

  4. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44, 744–765.

    Article  MathSciNet  MATH  Google Scholar 

  5. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16, 1451–1458.

    Article  Google Scholar 

  6. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45, 1456–1467.

    Article  MathSciNet  MATH  Google Scholar 

  7. Su, W., & Xia, X. G. (2004). Signal constellations for quasi-orthogonal space-time block codes with full diversity. IEEE Transactions on Information Theory, 50, 2331–2347.

    Article  MathSciNet  Google Scholar 

  8. Su, W., Xia, X. G., & Liu, K. J. R. (2004). A systematic design of high-rate complex orthogonal space-time block codes. IEEE Communications Letters, 8, 380–382.

    Article  Google Scholar 

  9. Fellenberg, C., & Rohling, H. (2009). Quadrature amplitude modulation for differential space-time block codes. Springer Wireless Personal Communications, 50, 247–255.

    Article  Google Scholar 

  10. Gupta, B., & Saini, S. D. (2012). Space-time/space-frequency/space-time-frequency block coded MIMO-OFDM system with equalizers in quasi static mobile radio channels using higher tap order. Wireless Personal Communication. doi:10.1007/s11277-012-0672-9.

  11. Wen, H. Gong, & G., Lv, S. C., & Ho, P. H. , (2011). Framework for MIMO cross-layer secure communication based on STBC. Telecommunication Systems. doi:10.1007/s11235-011-9540-2.

  12. Li, Y., & Stuber, G. L. (2007). Orthogonal frequency division multiplexing for wireless communications. Berlin: Springer.

    Google Scholar 

  13. Le, K. N. (2011). Additional insight on SAGE-based carrier and residual frequency offset estimations in OFDM systems. Springer Wireless Personal Communications, 60, 687–694.

    Article  Google Scholar 

  14. Le, K. N. (2010). BER of OFDM in Rayleigh fading environments with selective diversity. Wireless Communications and Mobile Computing, 10, 306–311.

    Google Scholar 

  15. Le, K. N. (2008). Bounds on inter-carrier interference power of OFDM in a Gaussian scattering channel. Springer Wireless Personal Communications, 47, 355–362.

    Article  Google Scholar 

  16. Le, K. N. (2008). Inter-carrier interference power of OFDM in a uniform scattering channel. Computer Communications, 31, 3883–4230.

    Article  Google Scholar 

  17. Le, K. N. (2008). Insights on ICI and its effects on performance of OFDM systems. Digital Signal Processing, 18, 876–884.

    Article  Google Scholar 

  18. Le, K. N., & Dabke, K. P. (2010). BER of OFDM with diversity and pulse shaping in Rayleigh fading environments. Digital Signal Processing, 20, 1687–1696.

    Article  Google Scholar 

  19. Su, W., Safar, Z., Olfat, M., & Liu, K. J. R. (2003). Obtaining full-diversity space-frequency codes from space-time codes via mapping. IEEE Transactions on Signal Processing, 51, 2905–2916.

    Article  MathSciNet  Google Scholar 

  20. Su, W., Safar, Z., & Liu, K. J. R. (2005). Full-rate full-diversity space-frequency codes with optimum coding advantage. IEEE Transactions on Information Theory, 51, 229–249.

    Article  MathSciNet  Google Scholar 

  21. Huttera, A. A., Mekrazib, S., Getuc, B. N., & Platbrooda, F. (2005). Alamouti-based space-frequency coding for OFDM. Springer Wireless Personal Communications, 35, 173–185.

    Article  Google Scholar 

  22. Molisch, A. F., Win, M. Z., & Winters, J. H. (2002). Space-time-frequency (STF) coding for MIMO-OFDM systems. IEEE Communications Letters, 6, 370–372.

    Article  Google Scholar 

  23. Liu, Z., Xin, Y., & Giannakis, G. (2002). Space-time-frequency coded OFDM over frequency selective fading channels. IEEE Transactions on Signal Processing, 50, 2465–2476.

    Article  Google Scholar 

  24. Su, W., Safar, Z., & Liu, K. J. R. (2005). Towards maximum achievable diversity in space, time and frequency: Performance analysis and code design. IEEE Transactions on Wireless Communications, 4, 1847–1857.

    Article  Google Scholar 

  25. Fozunbal, M., Mclaughlin, S. W., & Schafer, R. W. (2005). On space-time-frequency coding over MIMO-OFDM systems. IEEE Transactions on Wireless Communications, 4, 320–331.

    Article  Google Scholar 

  26. Palou, F. R., Femenias, G., & Ramis, J. (2007). BER analysis of group-orthogonal multicarrier code-division multiplex systems. Springer Wireless Personal Communications, 36, 97–105.

    Google Scholar 

  27. Damen, M. O., & Beaulieu, N. C. (2003). On two high-rate algebraic space time codes. IEEE Transactions on Information Theory, 49, 1059–1063.

    Article  MathSciNet  MATH  Google Scholar 

  28. Sethuraman, B. A., Rajan, B. S., & Shashidhar, V. (2003). Full-diversity, high-rate space-time block codes from division algebras. IEEE Transactions on Information Theory, 49, 2596–2616.

    Article  MathSciNet  Google Scholar 

  29. Zhang, W., Xia, X. G., & Ching, P. C. (2004). A design of high rate space frequency codes for MIMO-OFDM systems. In Proceedings of the IEEE Global Telecommunication Conference, pp. 209–213.

  30. Zhang, W., Xia, X. G., Ching, P. C., & Wang, H. (2005). Rate two full diversity space frequency code design for MIMO-OFDM. In Proceedings of the IEEE 6th workshop on signal processing advances in wireless communications, pp. 321–325.

  31. Kiran, T., & Rajan, B. S. (2005). A systematic design of high rate full diversity space frequency codes for MIMO-OFDM systems. In Proceedings of the International Symposium on Information Theory, pp. 2075–2079.

  32. Biglieri, E., Caire, G., & Taricco, G. (2001). Limiting performance for block fading channels with multiple antennas. IEEE Transactions on Information Theory, 47, 1273–1289.

    Article  MathSciNet  MATH  Google Scholar 

  33. El Gamal, H., & Hammons, A. R, Jr. (2003). On the design of algebraic space time codes for MIMO block fading channels. IEEE Transactions on Information Theory, 49, 151–163.

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, W., Xia, X. G., & Ching, P. C. (2007). High rate full diversity space time frequency codes for broadband MIMO block fading channels. IEEE Transactions on Communications, 55, 25–34.

    Article  Google Scholar 

  35. Jakes, W. C. (1975). Microwave mobile communications. London: Wiley.

    Google Scholar 

  36. Holakouei, R., Silva, A., & Gameiro, A. (2011). Multiuser precoding techniques for a distributed broadband wireless system. Telecommunication Systems. doi:10.1007/s11235-011-9496-2.

  37. Giraud, X., Boutillon, E., & Belfiore, J. C. (1997). Algebraic tools to build modulation schemes for fading channels. IEEE Transactions on Information Technology, 43, 938–952.

    Article  MathSciNet  MATH  Google Scholar 

  38. Xia, X. (2001). Precoded and vector OFDM robust to channel spectral nulls and with reduced cyclic prefix length in single transmit antenna system. IEEE Transactions on Communications, 49, 1363–1374.

    MATH  Google Scholar 

  39. Proakis, J. G. (2001). Digital communications. New York: McGraw-Hill.

    Google Scholar 

  40. Chung, S. T., & Goldsmith, A. J. (2001). Degrees of freedom in adaptive modulation: A unified view. IEEE Transactions on Communications, 49, 1561–1571.

    Article  MATH  Google Scholar 

  41. Torabi, M., Aissa, S., & Soleymani, M. R. (2007). On the BER performance of space frequency block coded OFDM systems in fading MIMO channels. IEEE Transactions on Wireless Communications, 6, 1366–1373.

    Article  Google Scholar 

  42. Chang, T. H., Ma, W. K., & Chi, C. Y. (2008). Maximum-likelihood detection of orthogonal space-time block coded OFDM in unknown block fading channels. IEEE Transactions on Signal Processing, 56, 1637–1649.

    Article  MathSciNet  Google Scholar 

  43. Rezk, M., & Friedlander, B. (2011). On high performance MIMO communications with imperfect channel knowledge. IEEE Transactions on Wireless Communications, 10, 602–613.

    Article  Google Scholar 

  44. Viterbo, E., & Boutros, J. (1999). A universal lattice code decoder for fading channel. IEEE Transactions on Information Theory, 45, 1639–1642.

    Article  MathSciNet  MATH  Google Scholar 

  45. Hajiani, P., & Shafiee, H. (2005). Low complexity sphere decoding for space-frequency-coded MIMO-OFDM systems. In Proceedings of the second IFIP international conference on wireless and optical communications, networks, pp. 410–414.

  46. Zheng, C., Chu, X., McAllister, J., & Woods, R. (2011). Real-valued fixed-complexity sphere decoder for high dimensional QAM-MIMO systems. IEEE Transactions on Signal Processing, 59, 4493–4499.

    Article  MathSciNet  Google Scholar 

  47. Tarokh, V., Naguib, A., Seshadri, N., & Calderbank, A. R. (1999). Combined array processing and space time coding. IEEE Transactions on Information Theory, 45, 1121–1128.

    Article  MathSciNet  MATH  Google Scholar 

  48. Jiang, C., Zhang, H., Yuan, D., & Chen, H. H. (2008). A low complexity decoding scheme for quasi-orthogonal space-time block coding. In Proceedings of the 5th IEEE workshop on sensor array multi-channel, signal processing, pp. 9–12.

  49. Zhang, H., Yuan, D., & Chen, H. H. (2010). On array processing based quasi-orthogonal space time block coded OFDM systems. IEEE Transactions on Vehicular Technology, 59, 508–513.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davinder S. Saini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, B., Saini, D.S. A Rate \(\text{ M }_{\mathrm{T}}\) Full Diversity STF Block Coded \(4\times 4\) MIMO-OFDM System with Reduced Complexity. Wireless Pers Commun 72, 1489–1512 (2013). https://doi.org/10.1007/s11277-013-1092-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1092-1

Keywords

Navigation