Skip to main content
Log in

Reduction of Power Fluctuation in ECMA-368 Ultra Wideband Communication Systems Using Multilayer Perceptron Neural Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

ECMA-368 Ultra Wideband (UWB) wireless communication Standard adopts Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) technology to transmit information with high data rate (480 Mbits/s). However, the high Peak to Average Power Ratio of MB-OFDM UWB signals, limits the power efficiency of the high power amplifier due to nonlinear distortion. In order to avoid this drawback, an efficient scheme based on multilayer perceptron, artificial neural networks is proposed. The neural network is adjusted by using active constellation extension technique which provides satisfactory results. This proposed solution gives good performance compared to previously available methods with much lower complexity, without iterations, good bit error rate and no increase in transmitted signal power and bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. FCC 01–382 Public Safety Application and Broadband Internet Access Among Uses Envisioned by FCC Authorization of Ultra Wideband Technology.

  2. Nikookar, A., & Prasad, R. (2009). UWB For wireless communications. Introduction to ultra wideband for wireless communications (pp. 12–13). Netherlands: Springer.

  3. Chang, R. W. (1970). Orthogonal frequency division multiplexing. U.S. Patent, 3, 445–488.

    Google Scholar 

  4. Bingham, J. A. C. (1990). Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine, 28(5), 5–14.

    Article  MathSciNet  Google Scholar 

  5. Muquet, B., Wang, Z., Giannakis, G. B., De Courville, M., & Duhamel, P. (2002). Cyclic prefixing or zero padding for wireless multicarrier transmissions. IEEE Transaction on Communications, 50(12), 2136–2148.

    Article  Google Scholar 

  6. Batra, A., Balakrishnan, J., Aiello, G. R., Foerster, J. R., & Dabak, A. (2004). Design of a multiband OFDM system for realistic UWB channel environments. IEEE Transactions on Microwave Theory and Techniques, 52(9), 2125–2138.

    Article  Google Scholar 

  7. ECMA-368, High Rate Ultra Wideband PHY and MAC Standard.

  8. Banelli, P., Baruffa, G., & Cacopardi, S. (2001). Effects of HPA nonlinearity on frequency multiplexed OFDM signals. IEEE Transactions on Broadcasting, 47(2), 123–136.

    Article  Google Scholar 

  9. Bauml, R. W., Fischer, R. F. H., & Huber, J. B. (1996). Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. IEEE Electronics Letters, 32(22), 2056–2057.

    Article  Google Scholar 

  10. Muller, S. H., & Huber, J. B. (1996). OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences. IEEE Electronics Letters, 33(5), 368–369.

    Article  Google Scholar 

  11. Krongold, B. S., & Jones, D. L. (2003). PAR reduction in OFDM via active constellation extension. IEEE Transactions on Broadcasting, 49(3), 258–268.

    Article  Google Scholar 

  12. Lee, M. B., de Figueiredo, P. J. R., & Kim, Y. (2012). A computationally efficient tree-PTS technique for PAPR reduction of OFDM signals. Springer Wireless Personal Communications, 62(2), 431–442.

    Article  Google Scholar 

  13. Weng, -E. C., Chang, -W. C., Hung, -L. H., & Chen, -H. C. (2012). Novel low-complexity partial transmit sequences scheme for PAPR reduction in OFDM systems using adaptive differential evolution algorithm. Springer Wireless Personal Communications, doi:10.1007/s11277-012-0836-7.

  14. Louliej, A., Jabrane, Y., Said, B. A. E., & Ouahman, A. A. (2012). Peak to average power ratio reduction in ECMA-368 ultra wideband communication systems using active constellation extension. Springer Wireless Personal Communications, doi:10.1007/s11277-012-0714-3.

  15. Rosenblatt, F. X. (1961). Principles of neurodynamics: Perceptrons and the theory of brain mechanisms. Washington, DC: Spartan Books.

  16. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control Signals and Systems, 2(4), 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  17. Çiflikli, C., Özsahin, T. A., & Yapici, Ç. A. (2009). Artificial neural network channel estimation based on Levenberg-Marquardt for OFDM systems. Springer Wireless Personal Communications, 51(2), 221–229.

    Article  Google Scholar 

  18. Runfeng, Y., & Simon Sherratt, R. (2011). Multiband OFDM modulation and demodulation for ultra wideband communications. Intech Open Publishing Novel Applications of the UWB Technologies, doi:10.5772/16700.

  19. Wulich, D. (2005). Definition of efficient PAPR in OFDM. IEEE Communications Letters, 9(9), 832–834.

    Article  Google Scholar 

  20. 3GPP, (2006) Cubic Metric in 3GPP-LTE, 3GPP TSG RAN WG1.

  21. Deumal, M., Pijoan, L. J., Behravan, A., & Eriksson, T. (2008). Evaluation of performance improvement capabilities of PAPR-reducing methods. Springer Wireless Personal Communications, 47(1), 137–147.

    Article  Google Scholar 

  22. Ferdosizadeh, M., & Naeiny, F. N. (2010). PAPR reduction of space-time and space-frequency coded OFDM systems using active constellation extension, ArXiv:1002.1447.

  23. Omondi, A. R., & Rajapakse, J. C. (2006). FPGA implementations of neural networks. Berlin: Springer.

    Book  Google Scholar 

  24. Ibnkahla, M. (2000). Applications of neural networks to digital communications—a survey. Elsevier Signal Process, 80(7), 1185–1215.

    Article  MATH  Google Scholar 

  25. Castillo, E., Guijarro-Berdinas, B., Fontenla-Romero, O., & Alonso-Betanzos, A. (2006). A very fast learning method for neural networks based on sensitivity analysis. Journal of Machine Learning Research, 7(1), 1159–1182.

    MathSciNet  MATH  Google Scholar 

  26. Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, B., Zhou, Z., Zou, W., Li, D., & Feng, L. (2012). Optimal UWB waveform design based on radial basis function neural networks. Springer Wireless Personal Communications, 65(1), 235–251.

    Article  Google Scholar 

  28. Jabrane, Y., Jiménez, V. P. G., Armada, A. G., Said, B. A. E., & Ouahman, A. A. (2010). Reduction of power envelope fluctuations in OFDM signals by using neural networks. IEEE Communications Letters, 14(7), 599–601.

    Article  Google Scholar 

  29. Jiménez, V. P. G., Jabrane, Y., Armada, A. G., Said, B. A. E., & Ouahman, A. A. (2010). Reduction of the envelope fluctuations of multi-carrier modulations using adaptive neural fuzzy inference systems. IEEE Transactions on Communications, 59(1), 19–25. Vol.

    Article  Google Scholar 

  30. Siegl, C., & Fischer, R. F. H. (2008). Partial transmit sequences for peak-to-average power ratio reduction in multi antenna OFDM. EURASIP Journal on Wireless Communications and Networking, 2008(1), 1–11.

    Article  Google Scholar 

  31. Nikookar, A., & Prasad, R. (2009). Introduction to ultra wideband for wireless communications. (pp. 52–59). Springer Science + Business Media.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Louliej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louliej, A., Jabrane, Y., Said, B.A.E. et al. Reduction of Power Fluctuation in ECMA-368 Ultra Wideband Communication Systems Using Multilayer Perceptron Neural Networks. Wireless Pers Commun 72, 1565–1583 (2013). https://doi.org/10.1007/s11277-013-1096-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1096-x

Keywords

Navigation