Skip to main content

Advertisement

Log in

Optimized Spread Spectrum Watermarking for Fading-Like Collusion Attack with Improved Detection Performance

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposes an optimized spread spectrum image watermarking scheme robust against fading-like collusion attack using genetic algorithms (GA) in multiband (M-band) wavelet decomposition. M-band decomposition of host data offers advantages in better scale-space tiling and good energy compactness. This makes watermarking robust against frequency selective fading-like attack gain. On the other hand, GA would determine a threshold value for the selection of host coefficients (process gain i.e. the length of spreading code) used in watermark casting along with the respective embedding strengths. We then consider colluder (random gain) identification as multiuser detection problem and use successive interference cancelation (SIC) to accurately detect weak (low gain) colluder and innocent users too. A weighted correlator is developed first where weight factors are calculated through training/learning using a neural network. A closed mathematical form of joint probability of error is developed with the objective of minimizing the probability of false detection i.e. a colluder is identified as an innocent user and an innocent user is identified as a colluder, for a set of colluders involved. Simulation results show the relative performance gain of the weighted correlator and SIC scheme compared to the existing works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Campisi, P., Carli, M., Giunta, G., & Neri, T. (2003). Blind quality assesment for multimedia communications using tracing watermarking. IEEE Transactions on Signal Processing, 51(4), 996–1002.

    Article  MathSciNet  Google Scholar 

  2. Maity, S. P., & Delpha, C. (2010). Optimization in digital watermarking techniques, Chap. In Ed. vol., Adv. techn. in multimedia watermarking: Image, video and audio appl., IGI Global Pub., USA, pp. 369–406

  3. Kundur, D., & Hatzinakos, D. (2001). Diversity and attacks characterization for improved robust watermarking. IEEE Transactions on Signal Processing, 29, 2383–2396.

    Article  Google Scholar 

  4. Maity, S. P., Maity, S., & Sil, J. (2012). Multicarrier spread spectrum watermarking for secure error concealment in fading channel. Telecommunication Systems, 12, 219–229.

    Article  Google Scholar 

  5. Maity, S., Sil, J., Maity, S. P., & Delpha, C. (2011). Optimized spread spectrum watermarking for fading-like collusion attack. In Proceedings of the 14th international symposium on WPMC, Brest, France.

  6. Simon, M. K., Omura, J. K., Sholtz, R. A., & Levitt, B. K. (2002). Spread spectrum communications handbook (Electronic ed.). New York: McGraw-Hill.

    Google Scholar 

  7. Maity, S. P., & Kundu, M. K. (2011). Performance improvement in spread spectrum image watermarking using wavelets. International Journal of Wavelets, Multiresolution and Information Processing, 9(1), 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  8. Malver, H., & Florencio, A. F. (2003). Improved spread spectrum: A new modulation technique for robust watermarking. IEEE Transactions on Signal Processing, 51, 898–905.

    Article  MathSciNet  Google Scholar 

  9. Krishna Kumar, S., & Sreenivas, T. (2007). Increased watermark-to-host correlation of uniform random phase watermarks in audio signals. Signal Processing, 87, 61–67.

    Article  MATH  Google Scholar 

  10. Kumsawat, P., Attakitmongcol, K., & Srikaew, A. (2005). A new approach for optimization in image watermarking by using genetic algorithms. IEEE Transactions on Signal Processing, 53, 4707–4719.

    Article  MathSciNet  Google Scholar 

  11. Wang, R. Z., Lin, C. F., & Lin, J. C. (2000). Hiding data in images by optimal moderately significant-bit replacement. IEE Electronics Letters, 36(25), 2069–2070.

    Article  Google Scholar 

  12. Shieh, C. S., Huang, H. C., Wang, F. H., & Pan, J. S. (2004). Genetic watermarking based on transform domain techniques. Pattern Recognition, 37(3), 555–565.

    Article  Google Scholar 

  13. Khan, A., & Mirza, A. (2007). Genetic perceptual shaping: Utilizing cover image and conceivable attack information using genetic programming. Information Fusion, 8(4), 354–365.

    Article  Google Scholar 

  14. Maity, S. P., & Kundu, M. K. (2009). Genetic algorithms for optimality of data hiding in digital images. Soft Computing 13(4), 361–373.

    Google Scholar 

  15. Shih, F. Y., & Wu, Y. T. (2005). Robust watermarking and compression for medical images based on genetic algorithms. Information Sciences, 176, 200–216.

    Article  Google Scholar 

  16. Yu, P. T., Tsai, H., & Lin, J. S. (2001). Digital watermarking based on neural networks for color images. Signal Processing, 81, 663–671.

    Article  MATH  Google Scholar 

  17. Zhang, F., Pan, Z., Cao, K., Zheng, F., & Wu, F. (2008). The upper and lower bounds of the information-hiding capacity of digital images. Information Sciences, 178, 2950–2959.

    Article  MathSciNet  Google Scholar 

  18. Boneh, D., & Shaw, J. (1998). Collusion-secure fingerprinting for digital data. IEEE Transaction on Information Theory, 44, 1897–1905.

    Article  MathSciNet  MATH  Google Scholar 

  19. Luh, W., & Kundur, D. (2004). Digital media fingerprinting: Techniques and trends. In B. Furht & D. Kirovski (Eds.), Handbook of multimedia security. Boca Raton: CRC Press.

  20. Shahid, Z., Chaumont, M., & Puech, W. (2010). Spread spectrum-based watermarking for Tardos code-based fingerpringting for H.264/AVC video. In Proceedings of IEEE image processing, Tiwan, China.

  21. Trappe, W., Wu, M., Wang, Z. J., & Liu, K. J. R. (2003). Anti-collusion fingerprinting for multimedia. IEEE Transactions on Signal Processing, 51(4), 1069–1087.

    Article  MathSciNet  Google Scholar 

  22. He, S., & Wu, M. (2006). Joint coding and embedding techniques for multimedia fingerprinting. IEEE Transactions Information Forensics & Security, 1(2), 231–247.

    Article  Google Scholar 

  23. Cha, B.-H., & Jay Kuo, C.-C. (2009). Robust MC-CDMA based fingerprinting against time-varying collusion attacks. IEEE Transactions on Information Forensics and Security, 4(3), 302–317.

    Article  Google Scholar 

  24. Cvejic, N., & Seppanen, T. (2004). Spread spectrum audio watermarking using frequency hopping and attack characterization. Signal Processing, 84, 207–213.

    Article  MATH  Google Scholar 

  25. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error measurement to structural similarity. IEEE Transactions on Image Processing, 13, 1–14.

    Google Scholar 

  26. Hara, S., & Prasad, R. (1997). Overview of multicarrier CDMA. IEEE Communication Magazine, 35, 126–133.

    Article  Google Scholar 

  27. Maity, S. P., & Mukherjee, M. (2009). Subcarrier PIC scheme for high capacity CI/MC-CDMA system with variable data rates. In Proceedings of IEEE Mobile WiMAX’09, pp. 135–140.

  28. Moussaoui, M., Zaizouni, M., & Rouvaen, J. M. (2007). Another approach for partial interference cancellation. Wireless Personal Communications, 42, 587–606.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi P. Maity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maity, S.P., Maity, S., Sil, J. et al. Optimized Spread Spectrum Watermarking for Fading-Like Collusion Attack with Improved Detection Performance. Wireless Pers Commun 72, 1737–1753 (2013). https://doi.org/10.1007/s11277-013-1132-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1132-x

Keywords

Navigation