Skip to main content
Log in

Uplink Channel Sounding in TDD-OFDM Cellular Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we consider uplink channel sounding in time division duplex (TDD) orthogonal frequency division multiplexing (OFDM)-based cellular systems. The channel information provided by uplink sounding may be necessary to exploit closed loop transmission techniques in TDD-OFDM systems. However, conventional sounding schemes may suffer from large sounding overhead, significantly restricting the number of sounding users due to the resource shortage. To reduce the sounding overhead, the proposed scheme transmits sounding signal only through subchannels which are not highly correlated to each other. The whole channel information can be estimated from the partial one by exploiting the channel correlation in the frequency domain. Thus, the proposed scheme allows a larger number of users to transmit the sounding signal, while making the base station employ closed loop transmission techniques with the use of whole channel information. Finally, simulation results show that the proposed scheme noticeably improves the performance over conventional schemes in the presence of channel correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Paulraj, A., Nabar, R., & Gore, D. (2003). Introduction to space-time wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  2. Liu, X., & Shroff, N. B. (2003). A framework for opportunistic scheduling in wireless networks. IEEE Networks, 2(2), 451–474.

    Google Scholar 

  3. Viswanath, P., Tse, D., & Laroia, R. (2002). Opportunistic beamforming using dumb antennas. IEEE Transactions on Information Theory, 6(48), 1277–1294.

    Article  MathSciNet  Google Scholar 

  4. Love, D. J., Heath, R. W., & Strohmer, T. (2003). Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Transactions on Information Theory, 49(10), 2735–2747.

    Google Scholar 

  5. Au-Yeung, C. K., & Love, D. J. (2007). On the performance of random vector quantization limited feedback beamforming in a MISO system. IEEE Transactions on Wireless Communications, 6(2), 458–462.

    Google Scholar 

  6. Vook, F. W., Zhuang, X., Baum, K. L., Thomas, T. A., & Cudak, M. C. (2004). Signaling methodologies to support closed-loop transmit processing in TDD-OFDMA. IEEE C802.16e-04/103r2, July 2004.

  7. Choi, J. M., & Lee, J. H. (2007). Sounding subband allocation algorithm for proportional fair scheduling in OFDMA/FDD uplink. IEEE Electronics Letters, 43(9), 539–540.

    Article  MathSciNet  Google Scholar 

  8. Draft amendment to IEEE standard for local and metropolitan area networks. IEEE P802.16m/D11, January 2011.

  9. 3GPP TS 36.211: Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation (release 10), December 2010.

  10. Wang, C., & Murch, R. D. (2006). Adaptive downlink multi-user MIMO wireless systems for correlated channels with imperfect CSI. IEEE Transactions on Wireless Communications, 5(9), 2435–2446.

    Google Scholar 

  11. Ding, M., & Blostein, S. D. (2009). MIMO minimum total MSE transceiver design with imperfect CSI at both ends. IEEE Transactions on Signal Processing, 57(9), 1141–1150.

    Google Scholar 

  12. Marsch, P., & Fettweis, G. (2009). On downlink network MIMO under a constrained backhaul and imperfect channel knowledge. In Proceedings of IEEE GLOBECOM, December 2009.

  13. Lee, S.-H., & Lee, Y.-H. (2007). Channel probing in the uplink of OFDM-based wireless systems. In Proceedings of IEEE SARNOF, May 2007.

  14. Komulainene, P., Tolli, A., Latva-aho, M., & Juntti, M. (2009). Channel sounding pilot overhead reduction for TDD multiuser MIMO systems. In Proceedings of IEEE GLOBECOM.

  15. Samsung. (2009). SRS transmission issues in LTE-A, 3GPP R1-091879, May 2009.

  16. Kim, H.-S., Lee, S.-H., & Lee, Y.-H. (2010). Performance analysis of uplink sounding in frequency selective fading channel. In Proceedings of IEEE TENCON, November 2010.

  17. Proakis, J. G., & Salehi, M. (2008). Digital communications (5th ed.). New York: McGraw-Hill.

    Google Scholar 

  18. Lee, S.-H., & Kim, H.-S. (2010). Channel sounding with partial channel information in the uplink of OFDM-based wireless systems. Wireless Personal Communications.

  19. Hoeher, P., Kaiser, S., & Robertson, P. (1997). Two-dimensional pilot-symbol-aided channel estimation by Wiener filtering. In Proceedings of IEEE ICASSP, April 1997.

  20. Kim, H.-S., Lee, S.-H., & Lee, Y.-H. (2010). Channel sounding for multi-sector cooperative beamforming in TDD-OFDM wireless systems. In Proceedings of IEEE ICC, May 2010.

  21. Hwang, K.C., Li, J., Hwang, I.S., & Yoon, S.Y. (2009). Performance comparison of CDM and FDM for sounding channel of 802.16m AWD. IEEE C80216m–0850, April 2009.

  22. Erceg, V., et al. (1999). A model for the multipath delay profile of fixed wireless channels. IEEE Journal on Selected Areas in Communications, 17(3), 399–410.

    Google Scholar 

  23. Garcia, A. L. (1994). Probability and random processes for electrical engineering (2nd ed.). Reading, MA: Addison-Wesley.

    Google Scholar 

  24. Hwang, K. C., Kim, S. H., Lee, S. H., Hwang, I. S., & Yoon, S. Y. (2009). SLS results of CDM, FDM for sounding channel. IEEE C80216m–\(09\_0708\), March 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Sin Kim.

Appendices

Appendix 1: Derivation of (14)

Assuming that \(X\) and \(\hat{{X}}\) are zero mean complex Gaussian random variables, \(X\) can be modeled with \(\hat{{X}}\) and another zero mean complex Gaussian random noise \(Z\) with unit variance as [23]

$$\begin{aligned} X=\alpha \hat{{X}}+\beta Z \end{aligned}$$
(45)

where \(\alpha \) and \(\beta \) are respectively a complex coefficient and a real coefficient, satisfying

$$\begin{aligned} E\left\{ {X\hat{{X}}^{*}}\right\}&= \alpha E \left\{ {\left| {\hat{{X}}}\right| ^{2}}\right\} ,\end{aligned}$$
(46)
$$\begin{aligned} E\left\{ {\left| X\right| ^{2}}\right\}&= \left| \alpha \right| ^{2}E \left\{ {\left| {\hat{{X}}}\right| ^{2}}\right\} + \beta ^{2}. \end{aligned}$$
(47)

It can be seen from (5) and (9) that \(\tilde{H}_k (f,m)\) is a complex Gaussian random variable since it is a linear combination of complex Gaussian random variables [23]. Thus, \(H_k (f,m)\) can be expressed by \(\tilde{H}_k (f,m)\) with the use of (45) where \(X=H_k (f,m)\) and \(\hat{{X}}=\tilde{H}_k (f,m)\). It can be seen from (9) that

$$\begin{aligned} E\left\{ {H_k (f,m)\tilde{H}_k^*(f,m)}\right\}&= E\left\{ {\tilde{H}_k (f,m)\tilde{\mathbf{H}}_{k,\mathrm{LS}}^*(\mathbf{g}_{k,f},m)}\right\} \left\{ {\mathbf{A}_k^{-1} (\mathbf{g}_{k,f})}\right\} ^{*}\mathbf{C}_k^*(f,\mathbf{g}_{k,f})\nonumber \\&= \mathbf{C}_k(f,\mathbf{g}_{k,f})\left\{ {\mathbf{A}_k^{-1} (\mathbf{g}_{k,f})}\right\} ^{*}\mathbf{C}_k^*(f,\mathbf{g}_{k,f}), \end{aligned}$$
(48)
$$\begin{aligned} E\left\{ {\left| {\tilde{H}_k (f,m)}\right| ^{2}}\right\}&= \mathbf{C}_k (f,\mathbf{g}_{k,f})\mathbf{A}_k^{-1} (\mathbf{g}_{k,f})E \left\{ {{\tilde{\mathbf{H}}}_{k,\mathrm{LS}} (\mathbf{g}_{k,f}, m){\tilde{\mathbf{H}}}_{k,\mathrm{LS}}^*(\mathbf{g}_{k,f}, m)}\right\} \nonumber \\&\quad \times \left\{ {\mathbf{A}_k^{-1} (\mathbf{g}_{k,f})}\right\} ^{*}\mathbf{C}_k^*(f,\mathbf{g}_{k,f}) \nonumber \\&= \mathbf{C}_k (f,\mathbf{g}_{k,f}) \left\{ {\mathbf{A}_k^{-1} (\mathbf{g}_{k,f})}\right\} ^{*}\mathbf{C}_k^*(f,\mathbf{g}_{k,f}). \end{aligned}$$
(49)

Then, \(\sigma _k^2 \left( f\right) \) can be represented as

$$\begin{aligned} \sigma _k^2 \left( f\right)&= E\left\{ {\left| {\tilde{H}_k (f,m)-H_k (f,m)}\right| ^{2}}\right\} \nonumber \\&= E\left\{ {\left| {H_k(f,m)}\right| ^{2}}\right\} +E\left\{ {\left| {\tilde{H}_k (f,m)}\right| ^{2}}\right\} -E\left\{ {\left| {\tilde{H}_k (f,m)H_k^*(f,m)}\right| ^{2}}\right\} \nonumber \\&\quad -E\left\{ {\left| {H_k (f,m) \tilde{H}_k^*(f,m)}\right| ^{2}}\right\} \nonumber \\&= 1-\mathbf{C}_k (f,\mathbf{g}_{k,f})\mathbf{A}_k^{-1} (\mathbf{g}_{k,f}) \mathbf{C}_k^*(f,\mathbf{g}_{k,f}). \end{aligned}$$
(50)

Thus, (14) can be derived from (45) where

$$\begin{aligned} \alpha&= \frac{E\left\{ {H_k (f,m)\tilde{H}_k^*(f,m)}\right\} }{E\left\{ {\left| {\tilde{H}_k (f,m)}\right| ^{2}}\right\} }=1,\end{aligned}$$
(51)
$$\begin{aligned} \beta&= \sqrt{E\left\{ {\left| {H_k(f,m)}\right| ^{2}} \right\} -\left| \alpha \right| ^{2}E\left\{ {\left| {\tilde{H}_k(f,m)} \right| ^{2}}\right\} } \nonumber \\&= \sqrt{1-\left( {1-\sigma _k^2 \left( f\right) }\right) } =\sigma _k \left( f\right) . \end{aligned}$$
(52)

Appendix 2: Derivation of (19)

Assuming that \(\sigma _k^2 (f)\simeq \sigma ^2\), it can be seen from (18) that

$$\begin{aligned} \left\| {{\tilde{\mathbf{H}}}_{\hat{{k}}_f} (f)}\right\| ^{2}&= \mathop {\max }\limits _{k=\left\{ {0,\ldots ,K-1}\right\} } \left\{ {\left\| {{\tilde{\mathbf{H}}}_k (f)}\right\| ^{2}}\right\} \nonumber \\&= \mathop {\max }\limits _{k=\left\{ {0,\ldots ,K-1}\right\} } \left\{ {\sum _{m=0}^{M-1} {\left| {\tilde{H}_k \left( {f,m}\right) } \right| ^{2}}}\right\} \nonumber \\&\le \sum _{m=0}^{M-1} {\mathop {\max }\limits _{k=\left\{ {0,\ldots , K-1}\right\} } \left\{ {\left| {\tilde{H}_k \left( {f,m}\right) }\right| ^{2}}\right\} } \end{aligned}$$
(53)

and that

$$\begin{aligned} \bar{{\gamma }}&= \gamma _0 E \left\{ {\left\| {{\tilde{\mathbf{H}}}_{\hat{{k}}_f} (f)}\right\| ^{2}}\right\} +\gamma _0 \sigma ^2\nonumber \\&\le M\gamma _0 E\left\{ {\mathop {\max }\limits _{k= \left\{ {0,\ldots ,K-1}\right\} }\left\{ {\left| {\tilde{H}_k \left( {f,m}\right) }\right| ^{2}}\right\} }\right\} +\gamma _0 \sigma ^2. \end{aligned}$$
(54)

Let \(\lambda _k \left( {f,m}\right) =\big |{\tilde{H}_k (f,m)}\big |^{2}\) and \(\hat{{\lambda }}\left( {f,m}\right) = \max _{k=\left\{ {0,\ldots ,K-1}\right\} }\left\{ {\lambda _k \left( {f,m}\right) }\right\} \) where \(\tilde{H}_k (f,m)\) is a complex Gaussian random variable with variance \(1-\sigma ^{2}\). Then, it can be seen that \(\lambda _k \left( {f,m}\right) \) is a Rayleigh random variable [23] and that \(\hat{{\lambda }}\left( {f,m}\right) \) has cumulative distribution function and probability density function as, respectively,

$$\begin{aligned} F_{\hat{{\lambda }}\left( {f,m}\right) } \left( \lambda \right)&= \left\{ {F_{\lambda _k \left( {f,m}\right) } \left( \lambda \right) }\right\} ^{K}\nonumber \\&= \left( {1-\exp \left( {-\frac{\lambda }{1-\sigma ^2}}\right) } \right) ^{K},\end{aligned}$$
(55)
$$\begin{aligned} f_{\hat{{\lambda }}\left( {f,m}\right) } \left( \lambda \right)&= \frac{d}{d\lambda }F_{\hat{{\lambda }} \left( {f,m}\right) }\left( \lambda \right) \nonumber \\&= \frac{K}{1-\sigma ^2}\exp \left( {-\frac{\lambda }{1-\sigma ^2}} \right) \left( {1-\exp \left( {-\frac{\lambda }{1-\sigma ^2}}\right) } \right) ^{K-1} \end{aligned}$$
(56)

where \(\exp \left( x\right) \) is exponential function. Then,

$$\begin{aligned} E\left\{ {\hat{{\lambda }}\left( {f,m}\right) }\right\}&= \int \limits _0^\infty {\lambda f_{\hat{{\lambda }} \left( {f,m}\right) } \left( \lambda \right) d\lambda } \nonumber \\&= \int \limits _0^\infty K \frac{\lambda }{1-\sigma ^2}\exp \left( {-\frac{\lambda }{1-\sigma ^2}}\right) \left( {1-\exp \left( {-\frac{\lambda }{1-\sigma ^2}}\right) }\right) ^{K-1}d\gamma . \end{aligned}$$
(57)

Assuming that \(x=1-\exp \left\{ {-\lambda /{\left( {1-\sigma ^{2}}\right) }}\right\} \), it can be seen that \(\lambda =-\left( {1-\sigma ^{2}}\right) \ln \left( {1-x}\right) \) and \(dx=\left( {1-\sigma ^{2}}\right) ^{-1}\exp \left\{ {-\lambda /{\left( {1-\sigma ^{2}}\right) }}\right\} d\lambda \). Thus, \(E\left\{ {\hat{{\lambda }}\left( {f,m}\right) }\right\} \) can be derived as

$$\begin{aligned} E\left\{ {\hat{{\lambda }}\left( {f,m}\right) }\right\}&= \int \limits _0^1 K \left( {1-\sigma ^2}\right) x^{K-1}\left( {-\ln \left( {1-x}\right) }\right) dx \nonumber \\&= \int \limits _0^1 K \left( {1-\sigma ^2}\right) x^{K-1}\sum _{k=1}^\infty {\frac{x^{k}}{k}} dx\nonumber \\&= \left( {1-\sigma ^2}\right) \sum _{k=1}^\infty {\int \limits _0^1 K \frac{x^{K+k-1}}{k}dx} \nonumber \\&= \left( {1-\sigma ^2}\right) \sum _{k=1}^\infty {\frac{K}{k \left( {k+K}\right) }} \nonumber \\&= \left( {1-\sigma ^2}\right) \sum _{k=1}^\infty {\left( {\frac{1}{k} -\frac{1}{k+K}}\right) } \nonumber \\&= \left( {1-\sigma ^2}\right) \sum _{k=1}^K {\frac{1}{k}}. \end{aligned}$$
(58)

Then, (19) can be derived from (54).

Appendix 3: Comparison of DS and CSS for the Sounding

As illustrated in Fig. 7, sounding signals from multiple users are multiplexed in the same subchannel by means of DS (i.e., frequency division multiplexing) or CSS (i.e., code division multiplexing), and then simultaneously transmitted to the BS [8, 24]. The DS determines a set of sounding subcarriers for user \(k, {\hat{\mathbf{f}}}_{k,\mathrm{DS}}\), as (23). Each user transmits distinguishable sounding signal using orthogonal frequency resource with transmission power \(P_{k,\mathrm{DS}}\) determined as (24). The channel at a sounding subcarrier, \(H_k (\hat{{f}}_k, m)\), can be estimated by means of LS estimation, yielding a MSE of \(\hat{{\sigma }}_{k,\mathrm{DS}}^2 (\hat{{f}}_k)\) as (25).

On the other hand, the CSS determines a set of sounding subcarriers for user \(k, {\hat{\mathbf{f}}}_{k,\mathrm{CSS}}\), as

$$\begin{aligned} {\hat{\mathbf{f}}}_{k,\mathrm{CSS}} =\left\{ {\hat{{f}}_k \left| {\hat{{f}}_k =\hat{{b}}_k F+{f}^{\prime }, \text{ for }\,\hat{{b}}_k \in {\hat{\mathbf{B}}}_k \text{ and } \text{0 }\le {f}^{\prime }\le F-1}\right. }\right\} \end{aligned}$$
(59)

and transmits distinguishable sounding signal using a unique orthogonal cyclic shift code as

$$\begin{aligned} S_k (\hat{{f}}_k)&= \sqrt{P_{k,\mathrm{CSS}}}s_k \left( f\right) \nonumber \\&= \sqrt{\frac{P_{\mathrm{t}}}{\hat{{B}}_k F}}\exp \left( {-\frac{j2\pi u_k {f}^{\prime }}{\varphi }}\right) \end{aligned}$$
(60)

where \(\varphi \,\left( {\le F}\right) \) is the phase shift index [8]. The channel \(H_k (\hat{{f}}_k, m)\) where \(\hat{{b}}_k F\le \hat{{f}}_k \le \hat{{b}}_k F+F-1\), can be estimated by means of LS estimation as [21]

Fig. 7
figure 7

Sounding structure of DS and CSS when \(D=\varphi =6\) and \(F=18\)

$$\begin{aligned} \tilde{H}_{k,\mathrm{LS}} (\hat{{f}}_k,m)=\frac{\hat{{B}}_k F}{\varphi P_{\mathrm{t}}}\sum _{{f}^{\prime }=\varphi i}^{\varphi \left( {i+1}\right) -1} {Y(\hat{{b}}_k F+{f}^{\prime },m)S_k^*(\hat{{b}}_k F+{f}^{\prime })} \end{aligned}$$
(61)

where \(i=\left\lfloor {{\mathrm{mod}(\hat{{f}}_k,F)}/\varphi }\right\rfloor \), yielding an MSE of [16]

$$\begin{aligned} \hat{{\sigma }}_{k,\mathrm{CSS}}^2 (\hat{{f}}_k)=I_{k,\mathrm{CSS, self}} (\hat{{f}}_k)+I_{k,\mathrm{CSS}} (\hat{{f}}_k)+\frac{\hat{{B}}_k F}{\varphi P_\mathrm{t}}. \end{aligned}$$
(62)

Here \(I_{k,\mathrm{CSS, self}} (\hat{{f}}_k)\) is the self-interference term due to the frequency selective fading represented as

$$\begin{aligned} I_{k,\mathrm{CSS},\text{ self }} \left( {\hat{{f}}_k}\right)&= E \left\{ {\left| {H_k\left( {f,m}\right) -\frac{1}{\varphi }\sum _{{f}^{\prime } =\varphi i}^{\varphi \left( {i+1}\right) -1} {H_k \left( {\hat{{b}}_k F+{f}^{\prime },m}\right) }}\right| ^{2}}\right\} \nonumber \\&= 1+\frac{1}{\varphi }-\frac{2}{\varphi }\sum _{{f}^{\prime }=0}^{\varphi -1} {\text{ Re }\left\{ {R_k \left( {\mathrm{mod}\left( {\hat{{f}}_k, \varphi }\right) -{f}^{\prime }}\right) }\right\} }\nonumber \\&\quad +\,\frac{2}{\varphi } \sum _{\Delta f=1}^{\varphi -1} {\left( {1-\frac{\Delta f}{\varphi }} \right) \text{ Re }\left\{ {R_k \left( {\Delta f}\right) }\right\} } \end{aligned}$$
(63)

and \(I_{k,\mathrm{CSS}} (\hat{{f}}_k)\) is the multi-user sounding interference due to the code collision represented as

$$\begin{aligned} I_{k,\mathrm{CSS}} (\hat{{f}}_k)&= \frac{1}{\varphi ^{2}}E \left\{ {\left| {\sum _{{k}^{\prime }=0,{k}^{\prime }\ne k}^{K-1} {\sum _{{f}^{\prime } =\varphi i}^{\varphi \left( {i+1}\right) -1} {H_{{k}^{\prime }} (\hat{{b}}_k F+{f}^{\prime },m)} \exp \left( {j\frac{2\pi \left( {u_k -u_{{k}^{\prime }}} \right) {f}^{\prime }}{\varphi }}\right) }}\right| ^{2}}\right\} \nonumber \\&= \frac{K-1}{\varphi }+\frac{2}{\varphi ^{2}}\sum _{{k}^{\prime }=0,{k}^{\prime } \ne k}^{K-1} \sum _{\Delta f=1}^{\varphi -1} \left[ \begin{array}{l} \text{ Re }\left\{ {R_{{k}^{\prime }} \left( {\Delta f}\right) }\right\} \cos \left( \displaystyle {\frac{2\pi \left( {u_k -u_{{k}^{\prime }}}\right) \Delta f}{\varphi }} \right) \\ -\text{ Im }\left\{ {R_{{k}^{\prime }} \left( {\Delta f}\right) }\right\} \sin \left( \displaystyle {\frac{2\pi \left( {u_k -u_{{k}^{\prime }}}\right) \Delta f}{\varphi }}\right) \end{array}\right] .\nonumber \\ \end{aligned}$$
(64)

where \(i=\left\lfloor {{\mathrm{mod}(\hat{{f}}_k, F)}/\varphi }\right\rfloor , \text{ Re }\left\{ x\right\} \) and \(\text{ Im }\left\{ x\right\} \) are respectively the real and the imaginary part of a complex number \(x\). It can be seen that both \(I_{k,\mathrm{CSS, self}} (\hat{{f}}_k)\) and \(I_{k,\mathrm{CSS}} (\hat{{f}}_k)\) increase as \(R_k \left( {\Delta f}\right) \) decreases.

Assuming that \(D=\varphi \), it can be shown from (25) and (62) that the difference between the MSE of the DS and the CSS with the use of LS estimation can be represented as

$$\begin{aligned} \Delta \hat{{\sigma }}_k^2 (\hat{{f}}_k)&= \hat{{\sigma }}_{k,\mathrm{CSS}}^2 (\hat{{f}}_k)-\hat{{\sigma }}_{k,\mathrm{DS}}^2(\hat{{f}}_k) \nonumber \\&= I_{k,\mathrm{CSS, self}} (\hat{{f}}_k )+I_{k,\mathrm{CSS}} (\hat{{f}}_k) \ge 0. \end{aligned}$$
(65)

It can be seen from in (11) and (43) that the MSE of the MMSE interpolation decreases as that of the LS estimation at \(\hat{{f}}_k\) decreases. Thus, it is desirable to use the DS rather than the CSS when the MMSE interpolation is employed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HS., Lee, SH. & Lee, YH. Uplink Channel Sounding in TDD-OFDM Cellular Systems. Wireless Pers Commun 73, 563–585 (2013). https://doi.org/10.1007/s11277-013-1203-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1203-z

Keywords

Navigation