Skip to main content
Log in

Four Element Wideband Rectangular Dielectric Resonator Antenna Terminated in a Bio-medium

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a new four element rectangular dielectric resonator antenna (RDRA) for 5.0 GHz WLAN/WiMAX band is proposed. The simulation results for its radiation characteristics and the specific absorption rate (SAR) distribution in a homogenous bio-medium (muscle layer) for different antenna-to-muscle layer spacings are presented at different frequencies in 4.9–5.9 GHz band. The input characteristics of the proposed antenna and a single element RDRA of same size as the element are compared. The effect of changing antenna input power on maximum SAR value is also analyzed. The simulation study has been carried out using CST Microwave Studio software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mongia, R. K., & Bhartia, P. (1994). DRA: A review and general design relation for resonant frequency and bandwidth. International Journal of Microwave and Millimeter Wave Computer-Aided, Engineering, 4(3), 230–247.

    Article  Google Scholar 

  2. Ittipiboon, A., & Mongia, R. K. (1997). Theoretical and experimental investigations on rectangular dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 45(9), 1348–1356.

    Article  Google Scholar 

  3. Rezaei, P., Hakkak, M., & Forooaghi, K. (2006). Design of wideband dielectric resonator antenna with a two segment structure. Progress in Electromagnetics Research, PIER, 66, 111–124.

    Article  Google Scholar 

  4. Kajfez, D., & Kishk, A. A. (2002). Dielectric resonator antenna- possible candidate for adaptive antennas. In Proceedings VITEL 2002, international symposium on telecommunications, next generation networks and beyond, Portoroz, Slovenia, May 13–14.

  5. Kishk, A. A. (2003). Dielectric resonator antenna: A candidate for radar applications. In Proceeding of 2003 IEEE radar conference (pp. 258–264). Huntsville, AL.

  6. Saed, M., & Yadla, R. (2006). Microstrip-fed low profile and compact dielectric resonator antennas. Progress In Electromagnetics Research PIER, 56, 151–162.

    Article  Google Scholar 

  7. Kishk, A. A., Glisson, A. W., & Zhang, X. (2002). Analysis of dielectric resonator antennas excited by a coaxial probe with wideband enhancement. In Proceeding of 2002 IEEE AP-S symposium (pp. 568–571). San Antonio, TX.

  8. Kishk, A. A., Yin, Y., & Gilsson, A. W. (2002). Conical dielectric resonator antenna for wideband applications. IEEE Transactions on Antennas and Propagation, 50, 469–474.

    Article  Google Scholar 

  9. Mongia, R. K., Ittipiboon, A., & Cuhaci, M. (1994). Measurement of radiation efficiency of dielectric resonator antennas. IEEE Microwave Guide Letter, 4, 80–82.

    Article  Google Scholar 

  10. Mongia, R. K., Ittipiboon, A., Bhartia, P., & Cuhaci, M. (1993). Electric monopole antenna using a dielectric ring resonator. Electronic Letters, 29(17), 1530–1531.

    Article  Google Scholar 

  11. Guha, D., & Antar, Y. M. M. (2006). Four-element cylindrical dielectric resonator antenna for wideband monopole-like radiation. IEEE Transactions on Antennas Propagation, 54(9), 2657–2662.

    Article  Google Scholar 

  12. Guha, D., & Antar, Y. M. M. (2006). New half-hemispherical dielectric resonator antenna for broadband monopole-type radiation. IEEE Transactions on Antennas and Propagation, 54(12), 3621–3628.

    Article  Google Scholar 

  13. Guha, D., Gupta, B., & Antar, Y. M. M. (2008). Quarter of a hemispherical dielectric resonator: New geometry explored to design a wideband monopole-type antenna. XXIXth URSI General Assembly. http://www.ursi.org/proceedings/procGA08/papers/BP6p1.pdf.

  14. Okoniewski, M., & Stuchly, M. A. (1996). A study of the handset antenna and human body interaction. IEEE Transactions on Microwave Theory and, Techniques, 44(10), 1855–1864.

    Article  Google Scholar 

  15. Pradier, A., Lautru, D., Wong, M. F., Fouad, V. H., & Wiart, J. (2005). Rigorous evolution of specific absorption rate (SAR) induced in a multilayer biological structure. Vol: 3, European microwave conference.

  16. Gangwar, R. K., Singh, S. P., & Kumar, D. (2010). A modified fractal rectangular curve dielectric resonator antenna for WiMAX application. Progress in Electromagnetics Research C, 12, 37–51.

    Article  Google Scholar 

  17. Chang, T.-H., & Kiang, J.-F. (2009). Sectorial-beam dielectric resonator antenna for WIMAX with bent ground plane. IEEE Transactions on Antennas and Propagation, 57(2), 563–565.

    Article  Google Scholar 

  18. Ebrahimi-Ganjeh, M. A. (2006). Study of water bolus effect on SAR penetration depth and effective field size for local hyperthermia. Progress in Electromagnetics Research, 66, 111–124.

    Article  Google Scholar 

  19. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. Italian national research council, institute for applied physics. http://niremf.ifac.cnr.it/tissprop/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kumar Gangwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangwar, R.K., Singh, S.P. & Kumar, D. Four Element Wideband Rectangular Dielectric Resonator Antenna Terminated in a Bio-medium. Wireless Pers Commun 73, 663–677 (2013). https://doi.org/10.1007/s11277-013-1209-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1209-6

Keywords

Navigation