Skip to main content
Log in

Outage Performance of Underlay Cognitive Opportunistic Multi-relay Networks in the Presence of Interference from Primary User

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, considering the interferences from primary transmitter to secondary receiver and from secondary transmitter to primary receiver, we derive the upper and lower bounds of outage probability for underlay cognitive opportunistic multi-relay networks. Theoretical and simulation results show the upper and lower bounds converge to the exact outage probability at high interference-to-noise (INR) region. Because the interference from primary transmitter to secondary receiver is considered, an outage floor at high signal-to-noise ratio (SNR) occurs when INR increases proportionally with SNR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.

    Article  Google Scholar 

  2. Li, D. (2012). Joint power and rate control combined with adaptive modulation in cognitive radio networks. Wireless Personal Communications, 63(3), 0929–6212.

    Article  Google Scholar 

  3. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  Google Scholar 

  4. Huang, G., Luo, L., Zhang, G., Yang, P., Tang, D., & Qin, J. (2012). QoS-driven jointly optimal subcarrier pairing and power allocation for decode-and-forward OFDM relay systems. Wireless Personal Communications, 1–22. doi: 10.1007/s11277-012-0894-x (published online).

  5. Zhang, Q., Jia, J., & Zhang, J. (2009). Cooperative relay to improve diversity in cognitive radio networks. IEEE Communications Magazine, 47(2), 111–117.

    Article  Google Scholar 

  6. Farraj, A. K., & Hammad, E. M. (2012). Impact of quality of service constraints on the performance of spectrum sharing cognitive users. Wireless Personal Communications, 1–16. doi: 10.1007/s11277-012-0606-6 (published online).

  7. Luo, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.

    Article  Google Scholar 

  8. Yan, Z., Zhang, X., & Wang, W. (2011). Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communications Letters, 15(12), 1317–1319.

    Article  MathSciNet  Google Scholar 

  9. Xia, M., & Aissa, S. (2012). Cooperative AF relaying in spectrum-sharing systems: Performance analysis under average interference power constraints and Nakagami-m fading. IEEE Transactions on Communications, 60(6), 1523–1533.

    Article  MathSciNet  Google Scholar 

  10. Duong, T. Q., da Costa, D., Elkashlan, M., & Bao, V. N. Q. (2012). Cognitive amplify-and-forward relay networks over Nakagami-m fading. IEEE Transactions on Vehicular Technology, 61(5), 2368–2374.

    Article  Google Scholar 

  11. Yang, L., Alouini, M. S., & Qaraqe, K. (2012). On the performance of spectrum sharing systems with two-way relaying and multiuser diversity. IEEE Communications Letters, 16(8), 1240–1243.

    Article  Google Scholar 

  12. Duong, T. Q., Bao, V. N. Q., Tran, H., Alexandropoulos, G. C., & Zepernick, H. J. (2012). Effect of primary network on performance of spectrum sharing AF relaying. IET Electronics Letters, 48(1), 25–27.

    Article  Google Scholar 

  13. Yang, P., Luo, L., & Qin, J. (2012). Outage performance of cognitive relay networks with interference from primary user. IEEE Communications Letters, 16(10), 1695–1698.

    Article  Google Scholar 

  14. Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.

    Article  Google Scholar 

  15. Bletsas, A., Shin, H., & Win, M. Z. (2007). Cooperative communications with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications, 6(9), 3450–3460.

    Article  Google Scholar 

  16. Win, M. Z., & Winters, J. H. (2001). Virtual branch analysis of symbol error probability for hybrid selection/maximal-ratio combining in Rayleigh fading. IEEE Transactions on Wireless Communications, 49(11), 1926–1934.

    MATH  Google Scholar 

  17. Al-Karaki, J. N., & Kamal, A. E. (2004). Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, 11(6), 6–28.

    Article  Google Scholar 

  18. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed). London: Academic.

  19. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  20. Rudin, W. (1964). Principles of mathematical analysis (2nd ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61173148, 61102070, and 61202498), the Industry-University-Research Project of Guangdong Province and the Ministry of Education, China (2011B090400581), the Natural Science Foundation of Guangdong Province (S2011040004135), the Scientific and Technological Project of Guangzhou City (12C42051578 and 11A11060133), and Guangxi Natural Science Foundation (2012GXNSFBA053162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Appendices

Appendix 1: Proof of Lemma 4

Note that \(I_4\) in (10) can be rewritten as

$$\begin{aligned} I_4=\int \!\!\int \!\!\int _{\varOmega _1}\psi (x,y,z)dxdydz \end{aligned}$$
(22)

where

$$\begin{aligned} \psi (x,y,z)&= \text{ Pr }\left[ \frac{\gamma g_{sd}}{\gamma _I y x}+\frac{v}{\gamma _I x}< \gamma _{\text{ th }}\right] f_V(v)f_X(x)f_Y(y) \prod \limits _{{r_k} \in {\mathcal{D }_{l}}}\text{ Pr }\left[ \frac{\gamma Z_k}{\gamma _I y} \ge \gamma _{\text{ th }}\right] \nonumber \\&\prod \limits _{{r_k} \notin {\mathcal{D }_{l}}}\text{ Pr }\left[ \frac{\gamma Z_k}{\gamma _I y} < \gamma _{\text{ th }} \right] \end{aligned}$$
(23)

and \(\varOmega _1=\{\gamma /\gamma _Q \le y < \infty , \text{ ABDE }\}\). It is noted that \(0 \le \psi (x,y,z)<\infty \) and \(\psi (x,y,z)\) is a continuous function. According to additivity of integration on intervals [20, Theorem 6.12], the integral \(\int \!\!\int \!\!\int _{\varOmega _1}\psi (x,y,z)dxdydz\) increases with the increase of the area of \(\varOmega _1\) when \(\varOmega _1\in \varOmega =\{ 0 \le x,y,z<\infty \}\). Thus, by enlarging the integration region from \(\varOmega _1\) to \(\varOmega _2=\{\gamma /\gamma _Q \le y < \infty , \text{ AOE }\}\) shown in Fig. 2 and interchanging the order of integration, \(I_4\) is upper bounded by

$$\begin{aligned} I_4^{\text{ UB }}&= \int \limits _{\frac{\gamma }{\gamma _{Q}}}^{\infty } \int \limits _{0}^{\infty }\underbrace{\int \limits _{\frac{v}{\gamma _{\text{ th }}\gamma _{I}}}^{\infty } \text{ Pr }\left[ g_{sd}<\frac{(\gamma _{I}\gamma _{\text{ th }}x-v)y}{\gamma }\right] f_X(x)dx}_{\varphi } \nonumber \\&\quad \cdot f_V(v)dv \prod \limits _{{r_k} \in {\mathcal{D }_{l}}}\text{ Pr }\left[ \frac{\gamma Z_k}{\gamma _I y} \ge \gamma _{\text{ th }}\right] \prod \limits _{{r_k} \notin {\mathcal{D }_{l}}}\text{ Pr }\left[ \frac{\gamma Z_k}{\gamma _I y} < \gamma _{\text{ th }} \right] f_Y(y)dy. \end{aligned}$$
(24)

Integrating with respect to \(x,\, \varphi \) is expressed as

$$\begin{aligned} \varphi =\left[ 1-\frac{1}{\frac{\lambda _{sd}\gamma _{\text{ th }}\gamma _{I}y}{\lambda _{cd}\gamma }+1}\right] \exp \left( -\frac{\lambda _{cd}(v-\gamma _{\text{ th }})}{\gamma _{\text{ th }}\gamma _{I}}\right) \end{aligned}$$
(25)

where the correlation between \(Y\) and \(V\) is decoupled due to the integration regions enlarging. Substituting (4) and (25) into (24), \(I_4\) is expressed as

$$\begin{aligned} I_4^{\text{ UB }}=J_1 \cdot J_2, \end{aligned}$$
(26)

where

$$\begin{aligned} J_1&= \int \limits _{0}^{\infty }\exp \left( -\frac{\lambda _{cd}(v-\gamma _{\text{ th }})}{\gamma _{\text{ th }} \gamma _I}\right) dF_{V}(v), \end{aligned}$$
(27)
$$\begin{aligned} J_2&= \int \limits _{\frac{\gamma }{\gamma _{Q}}}^{\infty }\frac{y}{y+a_2} \bigg ( 1-\frac{b_2}{y+b_2}e^{-\frac{\lambda _{sr}\gamma _{\text{ th }} y}{\gamma }}\bigg )^{K-l} \bigg (\frac{b_2}{y+b_2}e^{-\frac{\lambda _{sr}\gamma _{\text{ th }} y}{\gamma }}\bigg )^l \lambda _{sp}e^{-\lambda _{sp}y}dy \end{aligned}$$
(28)

in which \(a_2=\frac{\lambda _{cd}\gamma }{\lambda _{sd}\gamma _{th}\gamma _{I}}\) and \(b_2=\frac{\lambda _{cr}\gamma }{\lambda _{sr}\gamma _{th}\gamma _{I}}\). Using Lemma 3, \(J_1\) can be expressed as

$$\begin{aligned} J_1=\exp \left( \lambda _{cd}/\gamma _I \right) \mathcal K (0,\infty , \lambda _{cd}/(\gamma _{\text{ th }}\gamma _I) ). \end{aligned}$$
(29)

Using the binomial theorem, \(J_2\) is given as

$$\begin{aligned} J_2=\int \limits _{\frac{\gamma }{\gamma _{Q}}}^{\infty } \sum \limits _{k=0}^{K-l}\sum \limits _{n=0}^{1}\left( {\begin{array}{c}K-l\\ k\end{array}}\right) \left( {\begin{array}{c}1\\ n\end{array}}\right) (-1)^{k+n} \left( \frac{a_2}{y+a_2}\right) ^n \left( \frac{b_2}{y+b_2}e^{-\frac{\lambda _{sr}\gamma _{\text{ th }}y }{\gamma }}\right) ^{k+l}\lambda _{sp}e^{-\lambda _{sp}y}dy.\nonumber \\ \end{aligned}$$
(30)

By invoking Lemma 2, \(J_2\) can be obtained as

$$\begin{aligned} J_2&=\sum \limits _{k=0}^{K-l}\sum \limits _{n=0}^{1}\left( {\begin{array}{c}K-l\\ k\end{array}}\right) \left( {\begin{array}{c}1\\ n\end{array}}\right) (-1)^{k+n}\lambda _{sp}a_{2}^{n} b_{2}^{k+l} \mathcal{L }\left( \frac{\gamma }{\gamma _{Q}},a_2,b_2,n,k+l, \frac{\lambda _{sr}\gamma _{\text{ th }}(k+l)}{\gamma } +\lambda _{sp}\right) . \end{aligned}$$
(31)

Substituting (29) and (31) into (26), the upper bound of \(I_4\) is obtained.

Furthermore, by shrinking the integration region of \(I_4\) to \(\varOmega _3=\{\gamma /\gamma _Q \le y < \infty , \text{ ABCDE }\}\), \(I_4\) is lower bounded by

$$\begin{aligned} I_4^{\text{ LB }}=O_1+O_2, \end{aligned}$$
(32)

where

$$\begin{aligned} O_1=&\int \limits _{\frac{\gamma }{\gamma _{Q}}}^{\infty } \int \limits _{0}^{\gamma _{\text{ th }}}\int \limits _{\frac{v+\gamma _{\text{ th }}}{\gamma _{\text{ th }}\gamma _{I}}}^{\infty } \text{ Pr }\left[ g_{sd}<\frac{(\gamma _{I}\gamma _{\text{ th }}x-v)y}{\gamma }\right] f_X(x)dx f_V(v)dv \nonumber \\&\cdot \prod \limits _{{r_k} \in {\mathcal{D }_{l}}}\text{ Pr }\left[ \frac{\gamma Z_k}{\gamma _I y} \ge \gamma _{\text{ th }}\right] \prod \limits _{{r_k} \notin {\mathcal{D }_{l}}}\text{ Pr }\left[ \frac{\gamma Z_k}{\gamma _I y} < \gamma _{\text{ th }} \right] f_Y(y)dy, \end{aligned}$$
(33)
$$\begin{aligned} O_2=&\int \limits _{\frac{\gamma }{\gamma _{Q}}}^{\infty } \int \limits _{\gamma _{\text{ th }}}^{\infty }\int \limits _{\frac{v}{\gamma _{\text{ th }}\gamma _{I}}}^{\infty } \text{ Pr }\left[ g_{sd}<\frac{(\gamma _{I}\gamma _{\text{ th }}x-v)y}{\gamma }\right] f_X(x)dx f_V(v)dv \nonumber \\&\cdot \prod \limits _{{r_k} \in {\mathcal{D }_{l}}}\text{ Pr }\left[ \frac{\gamma Z_k}{\gamma _I y} \ge \gamma _{\text{ th }}\right] \prod \limits _{{r_k} \notin {\mathcal{D }_{l}}}\text{ Pr }\left[ \frac{\gamma Z_k}{\gamma _I y} < \gamma _{\text{ th }} \right] f_Y(y)dy. \end{aligned}$$
(34)

Following the derivation of \(I_4^{\text{ UB }}\), we obtain \(O_1=O_3 \cdot O_4\) and \(O_2=O_5 \cdot J_2\), where

$$\begin{aligned} O_3&= \mathcal K \left( 0,\gamma _{\text{ th }}, \lambda _{cd}/(\gamma _{\text{ th }}\gamma _I) \right) , \end{aligned}$$
(35)
$$\begin{aligned} O_4&= \sum \limits _{k=0}^{K-l}\sum \limits _{n=0}^{1}\left( {\begin{array}{c}K-l\\ k\end{array}}\right) \left( {\begin{array}{c}1\\ n\end{array}}\right) (-1)^{k+n}\lambda _{sp}a_{2}^{n} b_{2}^{k+l} \nonumber \\&\quad \cdot \mathcal{L }\left( \frac{\gamma }{\gamma _{Q}},a_2,b_2,n,k+l, \frac{\lambda _{sd}\gamma _{\text{ th }}n}{\gamma } +\frac{\lambda _{sr}\gamma _{\text{ th }}(k+l)}{\gamma } +\lambda _{sp}\right) ,\end{aligned}$$
(36)
$$\begin{aligned} O_5&= \exp \left( \lambda _{cd}/\gamma _I \right) \mathcal K (\gamma _{\text{ th }},\infty , \lambda _{cd}/(\gamma _{\text{ th }}\gamma _I) ). \end{aligned}$$
(37)

Substituting (35)-(37) into (32), the lower bound of \(I_4\) is obtained.

Appendix 2: Proof of Theorem 1

From (16) and (17), the outage gap between the lower and upper bounds is formulated as

$$\begin{aligned} P_{\text{ out }}^{\text{ UB }}-P_{\text{ out }}^{\text{ LB }}&= \sum _{l=0}^K \left( {\begin{array}{c}K\\ l\end{array}}\right) \left( I_4^{\text{ UB }}-I_4^{\text{ LB }}\right) \nonumber \\&= \sum _{l=0}^K \left( {\begin{array}{c}K\\ l\end{array}}\right) \underbrace{\int \!\!\int \!\!\int _{\varOmega _2-\varOmega _3}\psi (x,y,z)dxdydz}_{\varDelta I_4}. \end{aligned}$$
(38)

It is noted that \(\varOmega _2-\varOmega _3=\{\gamma /\gamma _Q \le y < \infty , \text{ BODC }\}\) and interchanging the order of integration, \(\varDelta I_4\) can be expressed as

$$\begin{aligned} \varDelta I_4&= \int \limits _{\frac{\gamma }{\gamma _{Q}}}^{\infty } \int \limits _{0}^{\gamma _{\text{ th }}}\underbrace{\int _{\frac{v}{\gamma _{\text{ th }}\gamma _{I}}}^{\frac{v+\gamma _{\text{ th }}}{\gamma _{\text{ th }}\gamma _{I}}} \text{ Pr }\left[ g_{sd}<\frac{(\gamma _{I}\gamma _{\text{ th }}x-v)y}{\gamma }\right] f_X(x)dx}_{\chi } \nonumber \\&\quad \cdot f_V(v)dv \prod \limits _{{r_k} \in {\mathcal{D }_{l}}}\text{ Pr }\left[ \frac{\gamma Z_k}{\gamma _I y} \ge \gamma _{\text{ th }}\right] \prod \limits _{{r_k} \notin {\mathcal{D }_{l}}}\text{ Pr }\left[ \frac{\gamma Z_k}{\gamma _I y} < \gamma _{\text{ th }} \right] f_Y(y)dy. \end{aligned}$$
(39)

Integrating with respect to \(x,\, \chi \) is expressed as

$$\begin{aligned} \chi =\frac{\lambda _{sd}\gamma _{\text{ th }}\gamma _I y}{\lambda _{sd}\gamma _{\text{ th }}\gamma _I y+\lambda _{cd}\gamma }e^{-\frac{\lambda _{cd}(\gamma _{\text{ th }}-v)}{\gamma _{\text{ th }}\gamma _I}}- e^{-\frac{\lambda _{cd} v}{\gamma _{\text{ th }}\gamma _I}} \left( 1-\frac{\lambda _{cd}\gamma }{\lambda _{sd}\gamma _{\text{ th }}\gamma _I y+\lambda _{cd}\gamma }e^{-\frac{\lambda _{sd}\gamma _{\text{ th }} y}{\gamma }}\right) . \end{aligned}$$
(40)

When \(\gamma \) and \(\gamma _{Q}\) are fixed, \(\gamma _I \rightarrow \infty \), using the Taylor expansion, \(\chi \) is approximated as

$$\begin{aligned} \chi \approx \left[ \frac{\lambda _{cd}(\gamma _{\text{ th }}-v)}{\gamma _{\text{ th }}}-\frac{\lambda _{cd}\gamma }{\lambda _{sd}\gamma _{\text{ th }}y}\left( 1-e^{-\frac{\lambda _{sd}\gamma _{\text{ th }} y}{\gamma }}\right) \right] \frac{1}{\gamma _I}. \end{aligned}$$
(41)

Substituting (41) into (39), we obtain

$$\begin{aligned} \lim _{\gamma _I \rightarrow \infty } \varDelta I_4=0, \end{aligned}$$
(42)

which implies \(\mathop {\lim }\limits _{\gamma _I \rightarrow \infty } \left( P_{out}^{\text{ UB }}-P_{out}^{\text{ LB }} \right) =0\). When \(\rho =\gamma /\gamma _{I}\) and \(\rho _Q=\gamma _{Q}/\gamma _I\) are fixed, the similar result can be obtained.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Zhang, Q., Luo, L. et al. Outage Performance of Underlay Cognitive Opportunistic Multi-relay Networks in the Presence of Interference from Primary User. Wireless Pers Commun 74, 343–358 (2014). https://doi.org/10.1007/s11277-013-1288-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1288-4

Keywords

Navigation