Skip to main content
Log in

A Beacon-Based Collision-Free Channel Access Scheme for IEEE 802.11 WLANs

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In IEEE 802.11 based WLAN standard, distributed coordination function is the fundamental medium access control (MAC) technique. It employs a CSMA/CA with random binary exponential backoff algorithm and provides contention-based distributed channel access for stations to share the wireless medium. However, performance of this mechanism drops dramatically due to random structure of the backoff process, high collision probability and frame errors. That is why development of an efficient MAC protocol, providing both high throughput for data traffic and quality of service (QoS) support for real-time applications, has become a major focus in WLAN research. In this paper, we propose an adaptive beacon-based collision-free MAC adaptation. The proposed scheme makes use of beacon frames sent periodically by access point, lets stations enter the collision-free state and reduces the number of idle slots regardless of the number of stations and their traffic load (saturated or unsaturated) on the medium. Simulation results indicate that the proposed scheme dramatically enhances the overall throughput and supports QoS by reducing the delay, delay variation and dropping probability of frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. \(V(d)\) is chosen 16 for the first transmission attempt throughout the simulations since the CW\(_\mathrm{min}\) is set between 0 and 31 in CSMA/CA DCF.

  2. We say that the network has reached to the collision-free state when all stations in the network have reserved a different slot in a backoff period

  3. In simulations, \(x_{e}\) is set to the value that makes \(V(d)_{new}\) multiples of 4, such as if \(x_{t} = 3, x_{e} = 1\) or if \(x_{t}= 5, x_{e }\)= 3, and so on.

  4. We say that network has reached to its stable-state when \(V(d)\) is reassigned after all stations capture the slots side-by-side.

References

  1. IEEE Std 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, 1999 Edition.

  2. IEEE Std 802.11e-2005, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements, IEEE, 2005.

  3. Alonso, L., & Agustí, R. (2006). Optimization of wireless communication systems using cross-layer information. Signal Processing Journal, 86(8), 1755–1772.

    Article  MATH  Google Scholar 

  4. Barcelo, J., Bellalta, B., Sfairopoulou, A., Cano, C., & Oliver, M. (2009). CSMA with enhanced collision avoidance: A performance assessment. IEEE VTC Spring.

  5. Barcelo, J., Bellalta, B., Cano, C., Sfairopoulou, A., Oliver, M., & Zuidweg, J. (2009). Traffic prioritization for carrience sense multiple access with enhanced collision avoidance. IEEE ICC (MACOM).

  6. Barcelo, J., Bellalta, B., Cano, C., & Oliver, M. (2008). Learning-BEB: Avoiding Collisions in WLAN. Eunice Summer School.

  7. Barcelo, J., Bellalta, B., Sfairopoulou, A., Cano, C., & Oliver, M. (2009). Carrier sense multiple access with enhanced collision avoidance: A performance analysis. ACM IWCMC.

  8. Barcelo, J., Bellalta, B., Cano, C., Sfairopoulou, A., & Oliver, M. (2010). Dynamic parameter adjustment in CSMA/ECA. MACOM.

  9. Yong, H., Jie, S., Ruixi, Y., & Weibo, G. (2009). Semi-random backoff: Towards resource reservation for channel access in 802.11e wireless LANs. Princeton: ICNP’09.

    Google Scholar 

  10. Lee, J., & Walrand, J. (2008). Design and analysis of an asynchronous zero collision MAC protocol. arxiv, preprint arXiv:0806.3542.

  11. Fang, M., Malone, D., Duffy, K. R., & Leith, D. J. Decentralised learning MACs for collision-free access in WLANs. CoRR abs/1009.4386: Wireless Networks, to appear on.

  12. Tuysuz, M. F., & Mantar, H. A. (2013). An uninterrupted collision-free channel access scheme over IEEE 802.11 WLANs. Shangai, China: IEEE WCNC, April 2013.

  13. Tuysuz, M. F., & Mantar, H. A. (2013). Novel beacon-based collision-free channel access mechanism over IEEE 802.11 WLANs. Shangai, China: IEEE WCNC, April 2013.

  14. Kwon, Y., Fang, Y., & Latchman, H. (2004). Design of MAC protocols With fast collision resolution for wireless local area networks. IEEE Transactions on Wireless Communications, 3(3), 793–807.

    Article  Google Scholar 

  15. Chatzimisios, P., Vitsas, V., Boucouvalas, A. C., & Tsoulfa, M. (2007). Achieving performance enhancement in IEEE 802.11 WLANs by using the DIDD backoff mechanism. International Journal of Telecommunication Systems, 20, 23–41.

    Article  Google Scholar 

  16. Ke, Chih-Heng, Wei, Chih-Cheng, Lin, Kawuu W., & Ding, Jen-Wen. (2011). A smart exponential-threshold-linear backoff mechanism for IEEE 802.11 WLANs. International Journal Of Telecommunication Systems, 24, 1033–1048.

    Article  Google Scholar 

  17. Haas, Z. J., & Deng, J. (2003). On optimizing the backoff interval for random access schemes. IEEE Transactions on Communications, 51, 2081–2090.

    Article  Google Scholar 

  18. Liu, W., Jin, H., Wang, X., & Guizani, M. (2011). A novel IEEE 802.11-based MAC protocol supporting cooperative communications. International Journal of Telecommunication Systems, 24, 1480–1495.

    Article  Google Scholar 

  19. Sun-Myeng, K., & Young-Jong, C. (2006). A distributed collision resolution scheme for improving the performance in wireless LANs. Computer Networks, 50(3), 289–300.

    Article  MATH  Google Scholar 

  20. Abd-Elnaby, M., Rizk, M. R. M., Dessouky, M. I., & El-Dolil, S. A. (2011). Efficient contention-based MAC protocol using adaptive fuzzy controlled sliding backoff interval for wireless networks. Computers and Electrical Engineering, 37(1), 115–125.

    Article  Google Scholar 

  21. Gyung-Ho, H., & Dong-Ho, C. (2005). New access scheme for VoIP packets in IEEE 802.11e wireless LANs. IEEE Communications on Letters, 9(7), 667–669.

    Article  Google Scholar 

  22. Papachristou, C., & Pavlidou, F. N. (2002). Collision-free operation in ad hoc carrier sense multiple access wireless networks. IEEE Communications on Letters, 6(8), 352–354.

    Article  Google Scholar 

  23. Toledo, A. L., Vercauteren, T., & Wang, X. (2006). Adaptive optimization of IEEE 802.11 DCF based on Bayesian estimation of the number of competing terminals. IEEE Transactions on Mobile Computing, 5(9), 1283–1296.

    Article  Google Scholar 

  24. Bianchi, G., & Tinnirello, I. (2003). Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network. IEEE Infocom, 2, 884–884.

    Google Scholar 

  25. Chatzimisios, P., & Boucouvalas, A. C. (2005). Packet delay analysis of the advanced infrared (AIr) CSMA/CA MAC protocol in optical wireless LANs. International Journal of Communication Systems, 18(3), 307–331.

    Article  Google Scholar 

  26. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18, 535–547.

    Article  Google Scholar 

  27. Ni, Q., Romdhani, L., & Turletti, T. (2004). A survey of QoS enhancements for IEEE 802.11 wireless LAN. Journal of Wireless Communications and Mobile Computing, 4(5), 547–566.

    Article  Google Scholar 

  28. Li, B., Battiti, R., & Fang, Y. (2007). Achieving optimal performance by using IEEE 802.11 MAC protocol with service differentiation enhancements. IEEE Transactions on Vehicular Technology, 56(3), 1374–1387.

    Article  Google Scholar 

  29. Ziouva, E., & Antonakopoulos, T. (2002). CSMA/CA performance under high traffic conditions: Throughput and delay analysis. Computer Communications, 25(3), 313–321.

    Article  Google Scholar 

  30. Calì, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking, 8(6), 785–799.

    Article  Google Scholar 

  31. Sakurai, T., & Vu, H. L. (2007). MAC access delay of IEEE 802.11 DCF. IEEE Transactions on Wireless Communications, 6(5), 1702–1710.

    Article  Google Scholar 

  32. Xiao, Y. (2005). Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs. IEEE Transactions on Wireless Communications, 4(4), 1506–1515.

    Article  Google Scholar 

  33. Jain, R., Durresi, A., & Babic, G. (1999). Throughput fairness index: An explanation. In Proceedings of the ATM Forum/99-0045, Feb 1999.

  34. Haitao, W., Fan, Z., Qian Z., & Zhisheng N. Analysis of IEEE 802.11 DCF with hidden terminals. IEEE GLOBECOM, Nov 2006, pp. 1–5.

  35. Ekici, O., & Yongacoglu, A. IEEE 802.11a throughput performance with hidden nodes. IEEE Communications Letters, 12(6), June 2008.

  36. Tuysuz, M. F., & Mantar, H. A. (2013). Exploiting the channel using uninterrupted collision-free MAC adaptation over IEEE 802.11 WLANs. Wireless Communucations and Mobile Computing. doi:10.1002/wcm.2391.

  37. http://www.wi-fiplanet.com/tutorials/print.php/1492071.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Tuysuz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuysuz, M.F., Mantar, H.A. A Beacon-Based Collision-Free Channel Access Scheme for IEEE 802.11 WLANs. Wireless Pers Commun 75, 155–177 (2014). https://doi.org/10.1007/s11277-013-1353-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1353-z

Keywords

Navigation